Biophys J. 2010 Oct 6;99(7):L53-5. doi: 10.1016/j.bpj.2010.07.046.
A recently determined atomic structure of an H(+)-coupled ATP-synthase membrane rotor has revived the long-standing question of whether protons may be bound to these structures in the form of a hydronium ion. Using both classical and quantum-mechanical simulations, we show that this notion is implausible. Ab initio molecular dynamics simulations of the binding site demonstrate that the putative H(3)O(+) deprotonates within femtoseconds. The bound proton is thus transferred irreversibly to the carboxylate side chain found in the ion-binding sites of all ATP-synthase rotors. This result is consistent with classical simulations of the rotor in a phospholipid membrane, on the 100-nanosecond timescale. These simulations show that the hydrogen-bond network seen in the crystal structure is incompatible with a bound hydronium. The observed coordination geometry is shown to correspond instead to a protonated carboxylate and a bound water molecule. In conclusion, this study underscores the notion that binding and transient storage of protons in the membrane rotors of ATP synthases occur through a common chemical mechanism, namely carboxylate protonation.
最近确定的 H(+)-偶联 ATP 合酶膜转子的原子结构,重新引发了质子是否可能以水合氢离子的形式结合到这些结构中的长期存在的问题。我们使用经典和量子力学模拟表明,这种观点是不可信的。结合位点的从头算分子动力学模拟表明,假定的 H(3)O(+)在飞秒内去质子化。因此,结合质子不可逆地转移到位于所有 ATP 合酶转子的离子结合位点的羧酸盐侧链上。这一结果与磷脂膜中转子的经典模拟在 100 纳秒的时间尺度上是一致的。这些模拟表明,在晶体结构中看到的氢键网络与结合的水合氢离子不兼容。观察到的配位几何形状被证明对应于一个质子化的羧酸盐和一个结合的水分子。总之,这项研究强调了这样一种观点,即在 ATP 合酶的膜转子中,质子的结合和瞬时储存是通过一种共同的化学机制发生的,即羧酸盐质子化。