Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
Nat Chem Biol. 2010 Dec;6(12):891-9. doi: 10.1038/nchembio.457. Epub 2010 Oct 24.
The microscopic mechanism of coupled c-ring rotation and ion translocation in F(1)F(o)-ATP synthases is unknown. Here we present conclusive evidence supporting the notion that the ability of c-rings to rotate within the F(o) complex derives from the interplay between the ion-binding sites and their nonhomogenous microenvironment. This evidence rests on three atomic structures of the c(15) rotor from crystals grown at low pH, soaked at high pH and, after N,N'-dicyclohexylcarbodiimide (DCCD) modification, resolved at 1.8, 3.0 and 2.2 Å, respectively. Alongside a quantitative DCCD-labeling assay and free-energy molecular dynamics calculations, these data demonstrate how the thermodynamic stability of the so-called proton-locked state is maximized by the lipid membrane. By contrast, a hydrophilic environment at the a-subunit-c-ring interface appears to unlock the binding-site conformation and promotes proton exchange with the surrounding solution. Rotation thus occurs as c-subunits stochastically alternate between these environments, directionally biased by the electrochemical transmembrane gradient.
F1Fo-ATP 合酶中 c 环旋转和离子易位的微观机制尚不清楚。本文提供了确凿的证据支持以下观点:c 环在 Fo 复合物内旋转的能力源自离子结合位点与其非均相微环境之间的相互作用。这一证据基于在低 pH 值下生长、高 pH 值下浸泡以及用 N,N'-二环己基碳二亚胺 (DCCD) 修饰后,在 1.8、3.0 和 2.2 Å 分辨率下解析的来自 c(15)转子的三个原子结构。结合定量 DCCD 标记测定和自由能分子动力学计算,这些数据表明脂质膜如何最大限度地提高所谓质子锁定状态的热力学稳定性。相比之下,a 亚基-c 环界面处的亲水环境似乎会解锁结合位点构象,并促进与周围溶液的质子交换。因此,当 c 亚基随机在这些环境之间交替时,会发生旋转,这种旋转方向由跨膜电化学梯度定向。