Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK.
Bioinformatics. 2010 Nov 15;26(22):2833-40. doi: 10.1093/bioinformatics/btq554. Epub 2010 Oct 5.
Membrane proteins (MPs) are important drug targets but knowledge of their exact structure is limited to relatively few examples. Existing homology-based structure prediction methods are designed for globular, water-soluble proteins. However, we are now beginning to have enough MP structures to justify the development of a homology-based approach specifically for them.
We present a MP-specific homology-based coordinate generation method, MEDELLER, which is optimized to build highly reliable core models. The method outperforms the popular structure prediction programme Modeller on MPs. The comparison of the two methods was performed on 616 target-template pairs of MPs, which were classified into four test sets by their sequence identity. Across all targets, MEDELLER gave an average backbone root mean square deviation (RMSD) of 2.62 Å versus 3.16 Å for Modeller. On our 'easy' test set, MEDELLER achieves an average accuracy of 0.93 Å backbone RMSD versus 1.56 Å for Modeller.
http://medeller.info; Implemented in Python, Bash and Perl CGI for use on Linux systems; Supplementary data are available at http://www.stats.ox.ac.uk/proteins/resources.
膜蛋白(MPs)是重要的药物靶点,但对其确切结构的了解仅限于相对较少的例子。现有的基于同源性的结构预测方法是为球状、水溶性蛋白质设计的。然而,我们现在已经有足够的 MP 结构来证明专门为它们开发基于同源性的方法是合理的。
我们提出了一种专门针对 MP 的基于同源性的坐标生成方法 MEDELLER,该方法经过优化,可构建高度可靠的核心模型。该方法在 MPs 上的表现优于流行的结构预测程序 Modeller。这两种方法的比较是在 616 个 MPs 的目标-模板对上进行的,这些 MPs 按其序列同一性分为四个测试集。在所有的目标中,MEDELLER 的平均骨架均方根偏差(RMSD)为 2.62Å,而 Modeller 的平均骨架 RMSD 为 3.16Å。在我们的“简单”测试集中,MEDELLER 的平均准确度为 0.93Å,而 Modeller 的平均准确度为 1.56Å。
http://medeller.info;用 Python、Bash 和 Perl CGI 实现,用于 Linux 系统;补充数据可在 http://www.stats.ox.ac.uk/proteins/resources 获得。