Suppr超能文献

部分相关网络分析检测人类疾病中基因相互作用的改变:以子痫前期为模型。

Partial correlation network analyses to detect altered gene interactions in human disease: using preeclampsia as a model.

机构信息

Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Kvinne-barn senteret, 1.etg. Øst, 7006 Trondheim, Norway.

出版信息

Hum Genet. 2011 Jan;129(1):25-34. doi: 10.1007/s00439-010-0893-5. Epub 2010 Oct 8.

Abstract

Differences in gene expression between cases and controls have been identified for a number of human diseases. However, the underlying mechanisms of transcriptional regulation remain largely unknown. Beyond comparisons of absolute or relative expression levels, disease states may be associated with alterations in the observed correlational patterns among sets of genes. Here we use partial correlation networks aiming to compare the transcriptional co-regulation for 222 genes that are differentially expressed in decidual tissues between preeclampsia (PE) cases and non-PE controls. Partial correlation coefficients (PCCs) have been calculated in cases (N = 37) and controls (N = 58) separately. For all PCCs, we tested if they were significant non-zero in the cases and controls separately. In addition, to examine if a given PCC is different between the cases and controls, we tested if the difference between two PCCs were significant non-zero. In the group with PE cases, only five PCCs were significant (FDR p value ≤ 0.05), of which none were significantly different from the PCCs in the controls. However, in the controls we identified a total of 56 statistically significant PCCs (FDR p value ≤ 0.05), of which 31 were also significantly different (FDR p value ≤ 0.05) from the PCCs in the PE cases. The identified partial correlation networks included genes that are potentially relevant for developing PE, including both known susceptibility genes (EGFL7, HES1) and novel candidate genes (CFH, NADSYN1, DBP, FIGLA). Our results might suggest that disturbed interactions, or higher order relationships between these genes play an important role in developing the disease.

摘要

在许多人类疾病中,已经确定了病例和对照之间基因表达的差异。然而,转录调控的潜在机制在很大程度上仍然未知。除了比较绝对或相对表达水平外,疾病状态可能与观察到的基因集之间的相关模式的改变有关。在这里,我们使用偏相关网络,旨在比较 222 个基因在子痫前期(PE)病例和非 PE 对照的蜕膜组织中的转录共调控。分别在病例(N = 37)和对照(N = 58)中计算偏相关系数(PCC)。对于所有 PCC,我们分别测试它们在病例和对照中是否显著不为零。此外,为了检查给定的 PCC 在病例和对照之间是否不同,我们测试了两个 PCC 之间的差异是否显著不为零。在 PE 病例组中,只有五个 PCC 具有统计学意义(FDR p 值≤0.05),其中没有一个与对照组的 PCC 有显著差异。然而,在对照组中,我们总共确定了 56 个具有统计学意义的 PCC(FDR p 值≤0.05),其中 31 个与 PE 病例的 PCC 也有显著差异(FDR p 值≤0.05)。所确定的偏相关网络包括可能与 PE 发生相关的基因,包括已知的易感性基因(EGFL7、HES1)和新的候选基因(CFH、NADSYN1、DBP、FIGLA)。我们的结果可能表明,这些基因之间相互作用的紊乱或更高阶关系在疾病的发生中起着重要作用。

相似文献

1
Partial correlation network analyses to detect altered gene interactions in human disease: using preeclampsia as a model.
Hum Genet. 2011 Jan;129(1):25-34. doi: 10.1007/s00439-010-0893-5. Epub 2010 Oct 8.
3
Immune cell infiltration landscape and immune marker molecular typing in preeclampsia.
Bioengineered. 2021 Dec;12(1):540-554. doi: 10.1080/21655979.2021.1875707.
4
Identification of ACOX2 as a shared genetic risk factor for preeclampsia and cardiovascular disease.
Eur J Hum Genet. 2011 Jul;19(7):796-800. doi: 10.1038/ejhg.2011.19. Epub 2011 Feb 23.
6
Identifying miRNA regulatory mechanisms in preeclampsia by systems biology approaches.
Hypertens Pregnancy. 2017 Feb;36(1):90-99. doi: 10.1080/10641955.2016.1239736. Epub 2016 Nov 11.
8
Epigenetic regulation of placental gene expression in transcriptional subtypes of preeclampsia.
Clin Epigenetics. 2018 Mar 2;10:28. doi: 10.1186/s13148-018-0463-6. eCollection 2018.
9
Exploring the ceRNA network involving AGAP2-AS1 as a novel biomarker for preeclampsia.
Sci Rep. 2024 Nov 9;14(1):27330. doi: 10.1038/s41598-024-79224-2.

引用本文的文献

2
Tailored graphical lasso for data integration in gene network reconstruction.
BMC Bioinformatics. 2021 Oct 15;22(1):498. doi: 10.1186/s12859-021-04413-z.
3
Changes in pregnancy-related serum biomarkers early in gestation are associated with later development of preeclampsia.
PLoS One. 2020 Mar 3;15(3):e0230000. doi: 10.1371/journal.pone.0230000. eCollection 2020.
4
Difficulty in inferring microbial community structure based on co-occurrence network approaches.
BMC Bioinformatics. 2019 Jun 13;20(1):329. doi: 10.1186/s12859-019-2915-1.
5
Interrelationships between Multiple Climatic Factors and Incidence of Foodborne Diseases.
Int J Environ Res Public Health. 2018 Nov 7;15(11):2482. doi: 10.3390/ijerph15112482.
6
From genome-scale data to models of infectious disease: A Bayesian network-based strategy to drive model development.
Math Biosci. 2015 Dec;270(Pt B):156-68. doi: 10.1016/j.mbs.2015.06.006. Epub 2015 Jun 17.
8
Novel expression of EGFL7 in placental trophoblast and endothelial cells and its implication in preeclampsia.
Mech Dev. 2014 Aug;133:163-76. doi: 10.1016/j.mod.2014.04.001. Epub 2014 Apr 19.
10
Bioinformatics and systems biology of the lipidome.
Chem Rev. 2011 Oct 12;111(10):6452-90. doi: 10.1021/cr200295k. Epub 2011 Sep 23.

本文引用的文献

1
A transcriptional profile of the decidua in preeclampsia.
Am J Obstet Gynecol. 2011 Jan;204(1):84.e1-27. doi: 10.1016/j.ajog.2010.08.043.
3
Everything you never wanted to know about circular analysis, but were afraid to ask.
J Cereb Blood Flow Metab. 2010 Sep;30(9):1551-7. doi: 10.1038/jcbfm.2010.86. Epub 2010 Jun 23.
4
Genome-wide association study of circulating vitamin D levels.
Hum Mol Genet. 2010 Jul 1;19(13):2739-45. doi: 10.1093/hmg/ddq155. Epub 2010 Apr 23.
5
Low vitamin D may explain the link between preeclampsia and cardiovascular disease.
Am Heart J. 2010 Mar;159(3):e19. doi: 10.1016/j.ahj.2009.12.007.
6
Circular analysis in systems neuroscience: the dangers of double dipping.
Nat Neurosci. 2009 May;12(5):535-40. doi: 10.1038/nn.2303.
9
Galectin-2 3279TT variant protects against the lymphotoxin-alpha 252GG genotype associated ischaemic stroke.
Clin Neurol Neurosurg. 2009 Apr;111(3):227-30. doi: 10.1016/j.clineuro.2008.09.027. Epub 2008 Nov 14.
10
Complement factor H variant Y402H is not a risk factor for preeclampsia in the Finnish population.
Hypertens Pregnancy. 2008;27(4):328-36. doi: 10.1080/10641950801955691.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验