Laboratory of Mathematics in Imaging, Brigham and Women's Hospital, 1249 Boylston St., Boston, MA 02215, USA.
Comput Med Imaging Graph. 2011 Jan;35(1):16-30. doi: 10.1016/j.compmedimag.2010.09.001. Epub 2010 Oct 6.
In this paper, we introduce a new approach for tensor field segmentation based on the definition of mixtures of Gaussians on tensors as a statistical model. Working over the well-known Geodesic Active Regions segmentation framework, this scheme presents several interesting advantages. First, it yields a more flexible model than the use of a single Gaussian distribution, which enables the method to better adapt to the complexity of the data. Second, it can work directly on tensor-valued images or, through a parallel scheme that processes independently the intensity and the local structure tensor, on scalar textured images. Two different applications have been considered to show the suitability of the proposed method for medical imaging segmentation. First, we address DT-MRI segmentation on a dataset of 32 volumes, showing a successful segmentation of the corpus callosum and favourable comparisons with related approaches in the literature. Second, the segmentation of bones from hand radiographs is studied, and a complete automatic-semiautomatic approach has been developed that makes use of anatomical prior knowledge to produce accurate segmentation results.
在本文中,我们介绍了一种新的张量场分割方法,该方法基于张量上的混合高斯分布的定义作为统计模型。在著名的测地线活动区域分割框架上工作,该方案具有几个有趣的优点。首先,它比使用单个高斯分布产生更灵活的模型,使该方法能够更好地适应数据的复杂性。其次,它可以直接作用于张量值图像,或者通过一种并行方案,该方案独立地处理强度和局部结构张量,作用于标量纹理图像。已经考虑了两种不同的应用来展示所提出的方法在医学成像分割中的适用性。首先,我们在 32 个卷的数据集上进行了 DT-MRI 分割,成功地分割了胼胝体,并与文献中的相关方法进行了有利的比较。其次,研究了从手部 X 射线中分割骨骼的问题,并开发了一种完整的自动半自动方法,该方法利用解剖学先验知识来产生准确的分割结果。