FMRIB (Oxford University Centre for Functional MRI of the Brain), Department Clinical Neurology, University of Oxford, Oxford, UK.
Neuroimage. 2011 Feb 1;54(3):2198-217. doi: 10.1016/j.neuroimage.2010.09.073. Epub 2010 Oct 14.
In recent years, neuroimaging studies have increasingly been acquiring multiple modalities of data and searching for task- or disease-related changes in each modality separately. A major challenge in analysis is to find systematic approaches for fusing these differing data types together to automatically find patterns of related changes across multiple modalities, when they exist. Independent Component Analysis (ICA) is a popular unsupervised learning method that can be used to find the modes of variation in neuroimaging data across a group of subjects. When multimodal data is acquired for the subjects, ICA is typically performed separately on each modality, leading to incompatible decompositions across modalities. Using a modular Bayesian framework, we develop a novel "Linked ICA" model for simultaneously modelling and discovering common features across multiple modalities, which can potentially have completely different units, signal- and contrast-to-noise ratios, voxel counts, spatial smoothnesses and intensity distributions. Furthermore, this general model can be configured to allow tensor ICA or spatially-concatenated ICA decompositions, or a combination of both at the same time. Linked ICA automatically determines the optimal weighting of each modality, and also can detect single-modality structured components when present. This is a fully probabilistic approach, implemented using Variational Bayes. We evaluate the method on simulated multimodal data sets, as well as on a real data set of Alzheimer's patients and age-matched controls that combines two very different types of structural MRI data: morphological data (grey matter density) and diffusion data (fractional anisotropy, mean diffusivity, and tensor mode).
近年来,神经影像学研究越来越多地获取多种模态的数据,并分别搜索每种模态的任务或疾病相关变化。分析中的一个主要挑战是找到系统的方法,将这些不同的数据类型融合在一起,以自动发现多个模态之间相关变化的模式,如果存在的话。独立成分分析(ICA)是一种流行的无监督学习方法,可用于在一组受试者的神经影像学数据中找到变化模式。当为受试者获取多模态数据时,通常会分别对每种模态执行 ICA,从而导致模态之间的分解不兼容。我们使用模块化贝叶斯框架,开发了一种新的“链接 ICA”模型,用于同时对多个模态进行建模和发现共同特征,这些特征可能具有完全不同的单位、信号与噪声比、体素数、空间平滑度和强度分布。此外,该通用模型可以配置为允许张量 ICA 或空间连接的 ICA 分解,或者同时使用这两种方法。链接 ICA 自动确定每种模态的最佳权重,并且还可以在存在时检测单模态结构组件。这是一种完全概率方法,使用变分贝叶斯实现。我们在模拟的多模态数据集以及阿尔茨海默病患者和年龄匹配的对照者的真实数据集上评估了该方法,该数据集结合了两种非常不同类型的结构 MRI 数据:形态学数据(灰质密度)和扩散数据(各向异性分数、平均扩散率和张量模式)。