Duan KuaiKuai, Silva Rogers F, Rahaman Md Abdur, Fu Zening, Liu Jingyu, Kochunov Peter, van Erp Theo G M, Shultz Sarah, Calhoun Vince D
Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.
Marcus Autism Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA.
bioRxiv. 2025 Jun 6:2025.06.02.657541. doi: 10.1101/2025.06.02.657541.
Multimodal data collected by international and national biobanking efforts have distinct scales and model orders and provide unique and complementary insights into disease mechanisms. We propose a novel, flexible and efficient data fusion approach-aNy-way independent component analysis (aNy-way ICA). aNy-way ICA fuses N-way multimodal or multidomain data by optimizing the entire loading correlation structure of linked components via Gaussian independent vector analysis (IVA-G) and simultaneously optimizing independence via separate ICAs. This allows for distinct model orders for different modalities/domains and multiple linked sources detection across any number of modalities or domains without requiring orthogonality constraints on sources. Simulation results demonstrate that aNy-way ICA identifies the designed sources and loadings, as well as the true covariance patterns, with improved accuracy compared to other approaches, especially under noisy conditions. Applying aNy-way ICA to fuse 4D multi-domain fMRI data in schizophrenia, we identified a cortico-thalamo-cerebellar circuit, highlighting the functional linkages among higher order thalamic nuclei, the visual cortex, default mode network, and the posterior lobe of cerebellum. Their function links were replicated in two independent datasets. The connection among higher order thalamic nuclei, the visual cortex, and default mode network discriminates schizophrenia from controls and this aberrant connection is related to multiple cognitive deficits in both discovery and replication datasets, indicating the identified cortico-thalamo-cerebellar circuit may underlie "cognitive dysmetria" in schizophrenia.
国际和国家生物样本库工作收集的多模态数据具有不同的规模和模型阶数,并为疾病机制提供了独特且互补的见解。我们提出了一种新颖、灵活且高效的数据融合方法——任意方式独立成分分析(aNy-way ICA)。任意方式ICA通过高斯独立向量分析(IVA-G)优化链接成分的整个载荷相关结构,并通过单独的独立成分分析同时优化独立性,从而融合N维多模态或多域数据。这允许不同模态/域具有不同的模型阶数,并能跨任意数量的模态或域检测多个链接源,而无需对源施加正交性约束。模拟结果表明,与其他方法相比,任意方式ICA能更准确地识别设计的源和载荷以及真实的协方差模式,尤其是在有噪声的条件下。将任意方式ICA应用于融合精神分裂症的4D多域功能磁共振成像数据时,我们识别出了一个皮质-丘脑-小脑回路,突出了高阶丘脑核、视觉皮层、默认模式网络和小脑后叶之间的功能联系。它们的功能联系在两个独立数据集中得到了重复验证。高阶丘脑核、视觉皮层和默认模式网络之间的连接可区分精神分裂症患者与对照组,并且这种异常连接与发现和重复数据集中的多种认知缺陷有关,表明所识别的皮质-丘脑-小脑回路可能是精神分裂症“认知失调”的基础。