Suppr超能文献

用于大鼠血压调节的性别特异性计算模型。

Sex-specific computational models for blood pressure regulation in the rat.

机构信息

Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada.

Department of Biology and Schools of Computer Science and Pharmacology, University of Waterloo, Waterloo, Ontario, Canada.

出版信息

Am J Physiol Renal Physiol. 2020 Apr 1;318(4):F888-F900. doi: 10.1152/ajprenal.00376.2019. Epub 2020 Feb 10.

Abstract

In the past decades, substantial effort has been devoted to the development of computational models of the cardiovascular system. Some of these models simulate blood pressure regulation in humans and include components of the circulatory, renal, and neurohormonal systems. Although such human models are intended to have clinical value in that they can be used to assess the effects and reveal mechanisms of hypertensive therapeutic treatments, rodent models would be more useful in assisting the interpretation of animal experiments. Also, despite well-known sexual dimorphism in blood pressure regulation, almost all published models are gender neutral. Given these observations, the goal of this project is to develop the first computational models of blood pressure regulation for male and female rats. The resulting sex-specific models represent the interplay among cardiovascular function, renal hemodynamics, and kidney function in the rat; they also include the actions of the renal sympathetic nerve activity and the renin-angiotensin-aldosterone system as well as physiological sex differences. We explore mechanisms responsible for blood pressure and renal autoregulation and notable sexual dimorphism. Model simulations suggest that fluid and sodium handling in the kidney of female rats, which differs significantly from males, may contribute to their observed lower salt sensitivity as compared with males. Additionally, model simulations highlight sodium handling in the kidney and renal sympathetic nerve activity sensitivity as key players in the increased resistance of females to angiotensin II-induced hypertension as compared with males.

摘要

在过去的几十年中,人们投入了大量精力来开发心血管系统的计算模型。其中一些模型模拟人类的血压调节,包括循环、肾脏和神经激素系统的组成部分。虽然这些人类模型旨在具有临床价值,因为它们可用于评估高血压治疗的效果并揭示其机制,但啮齿动物模型在协助解释动物实验方面将更为有用。此外,尽管血压调节存在众所周知的性别二态性,但几乎所有已发表的模型都是性别中立的。鉴于这些观察结果,该项目的目标是为雄性和雌性大鼠开发第一个血压调节计算模型。由此产生的性别特异性模型代表了大鼠心血管功能、肾脏血液动力学和肾功能之间的相互作用;它们还包括肾脏交感神经活动和肾素-血管紧张素-醛固酮系统的作用以及生理性别差异。我们探讨了导致血压和肾脏自身调节以及显著性别二态性的机制。模型模拟表明,与雄性相比,雌性大鼠肾脏中的液体和钠处理存在显著差异,这可能导致它们观察到的盐敏感性降低。此外,模型模拟强调了肾脏中的钠处理和肾脏交感神经活动敏感性作为女性对血管紧张素 II 诱导的高血压的抗性增加的关键因素。

相似文献

1
Sex-specific computational models for blood pressure regulation in the rat.
Am J Physiol Renal Physiol. 2020 Apr 1;318(4):F888-F900. doi: 10.1152/ajprenal.00376.2019. Epub 2020 Feb 10.
2
Predicting sex differences in the effects of diuretics in renal epithelial transport during angiotensin II-induced hypertension.
Am J Physiol Renal Physiol. 2024 May 1;326(5):F737-F750. doi: 10.1152/ajprenal.00398.2023. Epub 2024 Mar 14.
3
Gender differences in pressure-natriuresis and renal autoregulation: role of the Angiotensin type 2 receptor.
Hypertension. 2011 Feb;57(2):275-82. doi: 10.1161/HYPERTENSIONAHA.110.166827. Epub 2010 Dec 28.
6
Differential sympathetic and angiotensinergic responses in rats submitted to low- or high-salt diet.
Regul Pept. 2007 Apr 5;140(1-2):5-11. doi: 10.1016/j.regpep.2006.11.007. Epub 2006 Dec 28.
7
Mechanisms of blood pressure salt sensitivity: new insights from mathematical modeling.
Am J Physiol Regul Integr Comp Physiol. 2017 Apr 1;312(4):R451-R466. doi: 10.1152/ajpregu.00353.2016. Epub 2016 Dec 14.
8
Norepinephrine-evoked salt-sensitive hypertension requires impaired renal sodium chloride cotransporter activity in Sprague-Dawley rats.
Am J Physiol Regul Integr Comp Physiol. 2016 Jan 15;310(2):R115-24. doi: 10.1152/ajpregu.00514.2014. Epub 2015 Nov 25.
9
Sex-specific long-term blood pressure regulation: Modeling and analysis.
Comput Biol Med. 2019 Jan;104:139-148. doi: 10.1016/j.compbiomed.2018.11.002. Epub 2018 Nov 10.
10
Resetting of renal blood autoregulation during acute blood pressure reduction in hypertensive rats.
Am J Physiol. 1998 Aug;275(2):R343-9. doi: 10.1152/ajpregu.1998.275.2.R343.

引用本文的文献

2
Sex matters: the frequently overlooked importance of considering sex in computational models.
Front Physiol. 2023 Jul 13;14:1186646. doi: 10.3389/fphys.2023.1186646. eCollection 2023.
3
A mathematical model of potassium homeostasis: Effect of feedforward and feedback controls.
PLoS Comput Biol. 2022 Dec 20;18(12):e1010607. doi: 10.1371/journal.pcbi.1010607. eCollection 2022 Dec.
4
Sex differences in circadian regulation of kidney function of the mouse.
Am J Physiol Renal Physiol. 2022 Dec 1;323(6):F675-F685. doi: 10.1152/ajprenal.00227.2022. Epub 2022 Oct 20.
5
Sex and species differences in epithelial transport in rat and mouse kidneys: Modeling and analysis.
Front Physiol. 2022 Sep 29;13:991705. doi: 10.3389/fphys.2022.991705. eCollection 2022.
6
Modeling within-Host SARS-CoV-2 Infection Dynamics and Potential Treatments.
Viruses. 2021 Jun 14;13(6):1141. doi: 10.3390/v13061141.
7
Sex differences in solute and water handling in the human kidney: Modeling and functional implications.
iScience. 2021 May 29;24(6):102667. doi: 10.1016/j.isci.2021.102667. eCollection 2021 Jun 25.
8
A Computational Model of Kidney Function in a Patient with Diabetes.
Int J Mol Sci. 2021 May 29;22(11):5819. doi: 10.3390/ijms22115819.
9
Impact of sex and pathophysiology on optimal drug choice in hypertensive rats: quantitative insights for precision medicine.
iScience. 2021 Mar 20;24(4):102341. doi: 10.1016/j.isci.2021.102341. eCollection 2021 Apr 23.
10
Use of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers During the COVID-19 Pandemic: A Modeling Analysis.
PLoS Comput Biol. 2020 Oct 8;16(10):e1008235. doi: 10.1371/journal.pcbi.1008235. eCollection 2020 Oct.

本文引用的文献

1
Functional implications of the sex differences in transporter abundance along the rat nephron: modeling and analysis.
Am J Physiol Renal Physiol. 2019 Dec 1;317(6):F1462-F1474. doi: 10.1152/ajprenal.00352.2019. Epub 2019 Sep 30.
2
Understanding sex differences in long-term blood pressure regulation: insights from experimental studies and computational modeling.
Am J Physiol Heart Circ Physiol. 2019 May 1;316(5):H1113-H1123. doi: 10.1152/ajpheart.00035.2019. Epub 2019 Mar 15.
3
Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association.
Circulation. 2019 Mar 5;139(10):e56-e528. doi: 10.1161/CIR.0000000000000659.
4
Modeling Sex Differences in the Renin Angiotensin System and the Efficacy of Antihypertensive Therapies.
Comput Chem Eng. 2018 Apr 6;112:253-264. doi: 10.1016/j.compchemeng.2018.02.009. Epub 2018 Feb 13.
5
Sex-specific long-term blood pressure regulation: Modeling and analysis.
Comput Biol Med. 2019 Jan;104:139-148. doi: 10.1016/j.compbiomed.2018.11.002. Epub 2018 Nov 10.
6
Functional implications of sexual dimorphism of transporter patterns along the rat proximal tubule: modeling and analysis.
Am J Physiol Renal Physiol. 2018 Sep 1;315(3):F692-F700. doi: 10.1152/ajprenal.00171.2018. Epub 2018 May 30.
7
SGLT2 inhibition in a kidney with reduced nephron number: modeling and analysis of solute transport and metabolism.
Am J Physiol Renal Physiol. 2018 May 1;314(5):F969-F984. doi: 10.1152/ajprenal.00551.2017. Epub 2018 Jan 17.
8
Sexual Dimorphic Pattern of Renal Transporters and Electrolyte Homeostasis.
J Am Soc Nephrol. 2017 Dec;28(12):3504-3517. doi: 10.1681/ASN.2017030295. Epub 2017 Aug 3.
9
Adaptive changes in GFR, tubular morphology, and transport in subtotal nephrectomized kidneys: modeling and analysis.
Am J Physiol Renal Physiol. 2017 Aug 1;313(2):F199-F209. doi: 10.1152/ajprenal.00018.2017. Epub 2017 Mar 22.
10
Solute transport and oxygen consumption along the nephrons: effects of Na+ transport inhibitors.
Am J Physiol Renal Physiol. 2016 Dec 1;311(6):F1217-F1229. doi: 10.1152/ajprenal.00294.2016. Epub 2016 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验