Suppr超能文献

大鼠肾单位中转运体丰度性别差异的功能意义:建模与分析。

Functional implications of the sex differences in transporter abundance along the rat nephron: modeling and analysis.

机构信息

Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada.

Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California.

出版信息

Am J Physiol Renal Physiol. 2019 Dec 1;317(6):F1462-F1474. doi: 10.1152/ajprenal.00352.2019. Epub 2019 Sep 30.

Abstract

The goal of the present study was to investigate the functional implications of sexual dimorphism in the pattern of transporters along the rodent nephron as reported by Veiras et al. ( 28: 3504-3517, 2017). To do so, we developed sex-specific computational models of water and solute transport along the superficial nephrons from male and female rat kidneys. The models account for the sex differences in the abundance of apical and basolateral transporters, single nephron glomerular filtration rate, and tubular dimensions. Model simulations predict that ~70% and 60% of filtered Na is reabsorbed by the proximal tubule of male and female rat kidneys, respectively. The lower fractional Na reabsorption in female kidneys is due primarily to their smaller transport area, lower Na/H exchanger activity, and lower claudin-2 abundance, culminating in significantly larger fractional delivery of water and Na to the downstream nephron segments in female kidneys. Conversely, the female distal nephron exhibits a higher abundance of key Na transporters, including Na-K-Cl cotransporters, Na-Cl cotransporters, and epithelial Na channels. The higher abundance of transporters accounts for the enhanced water and Na transport along the female, relative to male, distal nephron, resulting in similar urine excretion between the sexes. Consequently, in response to a saline load, the Na load delivered distally is greater in female rats than male rats, overwhelming transport capacity and resulting in higher natriuresis in female rats.

摘要

本研究旨在探究 Veiras 等人(28:3504-3517,2017)所报道的啮齿动物肾单位中转运体模式的性别二态性的功能意义。为此,我们针对雄性和雌性大鼠肾脏的浅层肾单位,开发了专门针对性别的水和溶质转运的计算模型。这些模型考虑了顶泌和基底侧转运体丰度、单肾单位肾小球滤过率和管状尺寸的性别差异。模型模拟预测,约 70%和 60%的过滤 Na 分别被雄性和雌性大鼠的近端小管重吸收。女性肾脏中 Na 重吸收的分数较低主要归因于其较小的转运面积、较低的 Na/H 交换器活性和较低的 Claudin-2 丰度,最终导致女性肾脏中更多的水和 Na 被输送到下游肾单位。相反,女性远曲小管具有更高丰度的关键 Na 转运体,包括 Na-K-Cl 共转运体、Na-Cl 共转运体和上皮 Na 通道。转运体的高丰度解释了女性远曲小管相对于男性远曲小管的水和 Na 转运增强,导致两性之间的尿排泄相似。因此,在盐负荷下,女性大鼠远端输送的 Na 负荷大于雄性大鼠,超过了转运能力,导致女性大鼠出现更高的利钠作用。

相似文献

1
Functional implications of the sex differences in transporter abundance along the rat nephron: modeling and analysis.
Am J Physiol Renal Physiol. 2019 Dec 1;317(6):F1462-F1474. doi: 10.1152/ajprenal.00352.2019. Epub 2019 Sep 30.
2
Sex and species differences in epithelial transport in rat and mouse kidneys: Modeling and analysis.
Front Physiol. 2022 Sep 29;13:991705. doi: 10.3389/fphys.2022.991705. eCollection 2022.
3
Adaptive changes in GFR, tubular morphology, and transport in subtotal nephrectomized kidneys: modeling and analysis.
Am J Physiol Renal Physiol. 2017 Aug 1;313(2):F199-F209. doi: 10.1152/ajprenal.00018.2017. Epub 2017 Mar 22.
4
Functional implications of sexual dimorphism of transporter patterns along the rat proximal tubule: modeling and analysis.
Am J Physiol Renal Physiol. 2018 Sep 1;315(3):F692-F700. doi: 10.1152/ajprenal.00171.2018. Epub 2018 May 30.
5
Altered expression of Na transporters NHE-3, NaPi-II, Na-K-ATPase, BSC-1, and TSC in CRF rat kidneys.
Am J Physiol. 1999 Aug;277(2):F257-70. doi: 10.1152/ajprenal.1999.277.2.F257.
6
Impact of angiotensin II-mediated stimulation of sodium transporters in the nephron assessed by computational modeling.
Am J Physiol Renal Physiol. 2019 Dec 1;317(6):F1656-F1668. doi: 10.1152/ajprenal.00335.2019. Epub 2019 Oct 28.
7
Adaptive changes in single-nephron GFR, tubular morphology, and transport in a pregnant rat nephron: modeling and analysis.
Am J Physiol Renal Physiol. 2022 Feb 1;322(2):F121-F137. doi: 10.1152/ajprenal.00264.2021. Epub 2021 Dec 13.
8
Sex differences in solute transport along the nephrons: effects of Na transport inhibition.
Am J Physiol Renal Physiol. 2020 Sep 1;319(3):F487-F505. doi: 10.1152/ajprenal.00240.2020. Epub 2020 Aug 3.
9
Regulation of renal Na transporters in response to dietary K.
Am J Physiol Renal Physiol. 2018 Oct 1;315(4):F1032-F1041. doi: 10.1152/ajprenal.00117.2018. Epub 2018 Jun 20.
10
Sexual Dimorphic Pattern of Renal Transporters and Electrolyte Homeostasis.
J Am Soc Nephrol. 2017 Dec;28(12):3504-3517. doi: 10.1681/ASN.2017030295. Epub 2017 Aug 3.

引用本文的文献

1
Cross-sex hormone therapy in rats induces sex-specific adaptations of renal function and sodium transporters expression.
Front Physiol. 2025 Aug 15;16:1653915. doi: 10.3389/fphys.2025.1653915. eCollection 2025.
2
Flow-dependent transport processes 2024: filtration, absorption, and secretion.
Am J Physiol Renal Physiol. 2025 May 1;328(5):F627-F637. doi: 10.1152/ajprenal.00303.2024. Epub 2025 Mar 17.
3
Effect of sex chromosome complement versus gonadal hormones on abundance of renal transporters.
Am J Physiol Renal Physiol. 2025 May 1;328(5):F638-F646. doi: 10.1152/ajprenal.00017.2025. Epub 2025 Mar 10.
4
Sex-Specific Differences in the Pathophysiology of Hypertension.
Biomolecules. 2025 Jan 18;15(1):143. doi: 10.3390/biom15010143.
5
Guidelines for sex-specific considerations to improve rigor in renal research and how we got there.
Am J Physiol Renal Physiol. 2025 Feb 1;328(2):F204-F217. doi: 10.1152/ajprenal.00136.2024. Epub 2024 Dec 20.
7
Sex differences in the adrenal circadian clock: a role for BMAL1 in the regulation of urinary aldosterone excretion and renal electrolyte balance in mice.
Am J Physiol Renal Physiol. 2025 Jan 1;328(1):F1-F14. doi: 10.1152/ajprenal.00177.2024. Epub 2024 Oct 24.
8
Optimizing renal transporter immunodetection: consequences of freeze-thaw during sample preparation.
Am J Physiol Renal Physiol. 2024 Oct 1;327(4):F655-F666. doi: 10.1152/ajprenal.00210.2024. Epub 2024 Aug 29.
9
Sex and circadian regulation of metabolic demands in the rat kidney: A modeling analysis.
PLoS One. 2024 Jul 17;19(7):e0293419. doi: 10.1371/journal.pone.0293419. eCollection 2024.
10
How the kidney regulates magnesium: a modelling study.
R Soc Open Sci. 2024 Mar 20;11(3):231484. doi: 10.1098/rsos.231484. eCollection 2024 Mar.

本文引用的文献

1
A computational model of epithelial solute and water transport along a human nephron.
PLoS Comput Biol. 2019 Feb 25;15(2):e1006108. doi: 10.1371/journal.pcbi.1006108. eCollection 2019 Feb.
2
Functional implications of sexual dimorphism of transporter patterns along the rat proximal tubule: modeling and analysis.
Am J Physiol Renal Physiol. 2018 Sep 1;315(3):F692-F700. doi: 10.1152/ajprenal.00171.2018. Epub 2018 May 30.
3
SGLT2 inhibition in a kidney with reduced nephron number: modeling and analysis of solute transport and metabolism.
Am J Physiol Renal Physiol. 2018 May 1;314(5):F969-F984. doi: 10.1152/ajprenal.00551.2017. Epub 2018 Jan 17.
4
Renal potassium handling in rats with subtotal nephrectomy: modeling and analysis.
Am J Physiol Renal Physiol. 2018 Apr 1;314(4):F643-F657. doi: 10.1152/ajprenal.00460.2017. Epub 2017 Dec 13.
5
Sexual Dimorphic Pattern of Renal Transporters and Electrolyte Homeostasis.
J Am Soc Nephrol. 2017 Dec;28(12):3504-3517. doi: 10.1681/ASN.2017030295. Epub 2017 Aug 3.
6
Adaptive changes in GFR, tubular morphology, and transport in subtotal nephrectomized kidneys: modeling and analysis.
Am J Physiol Renal Physiol. 2017 Aug 1;313(2):F199-F209. doi: 10.1152/ajprenal.00018.2017. Epub 2017 Mar 22.
7
A mathematical model of the rat kidney: K-induced natriuresis.
Am J Physiol Renal Physiol. 2017 Jun 1;312(6):F925-F950. doi: 10.1152/ajprenal.00536.2016. Epub 2017 Feb 8.
8
Solute transport and oxygen consumption along the nephrons: effects of Na+ transport inhibitors.
Am J Physiol Renal Physiol. 2016 Dec 1;311(6):F1217-F1229. doi: 10.1152/ajprenal.00294.2016. Epub 2016 Oct 5.
9
A computational model for simulating solute transport and oxygen consumption along the nephrons.
Am J Physiol Renal Physiol. 2016 Dec 1;311(6):F1378-F1390. doi: 10.1152/ajprenal.00293.2016. Epub 2016 Oct 5.
10
Impact of nitric-oxide-mediated vasodilation and oxidative stress on renal medullary oxygenation: a modeling study.
Am J Physiol Renal Physiol. 2016 Feb 1;310(3):F237-47. doi: 10.1152/ajprenal.00334.2015. Epub 2015 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验