Suppr超能文献

肌生成素 5'侧翼区中非 CpG、富含 CpC 元件的早期去甲基化:对活性去甲基化扩散的启动效应。

Early demethylation of non-CpG, CpC-rich, elements in the myogenin 5'-flanking region: a priming effect on the spreading of active demethylation.

机构信息

Department of Surgery P. Valdoni, Sapienza University of Rome, Italy.

出版信息

Cell Cycle. 2010 Oct 1;9(19):3965-76. doi: 10.4161/cc.9.19.13193. Epub 2010 Oct 29.

Abstract

The dynamic changes and structural patterns of DNA methylation of genes without CpG islands are poorly characterized. The relevance of CpG to the non-CpG methylation equilibrium in transcriptional repression is unknown. In this work, we analyzed the DNA methylation pattern of the 5'-flanking of the myogenin gene, a positive regulator of muscle differentiation with no CpG island and low CpG density, in both C2C12 muscle satellite cells and embryonic muscle. Embryonic brain was studied as a non-expressing tissue. High levels of both CpG and non-CpG methylation were observed in non-expressing experimental conditions. Both CpG and non-CpG methylation rapidly dropped during muscle differentiation and myogenin transcriptional activation, with an active demethylation dynamics. Non-CpG demethylation occurred more rapidly than CpG demethylation. Demethylation spread from initially highly methylated short CpC-rich elements to a virtually unmethylated status. These short elements have a high CpC content and density, share some motifs and largely coincide with putative recognition sequences of some differentiation-related transcription factors. Our findings point to a dynamically controlled equilibrium between CpG and non-CpG active demethylation in the transcriptional control of tissue-specific genes. The short CpC-rich elements are new structural features of the methylation machinery, whose functions may include priming the complete demethylation of a transcriptionally crucial DNA region.

摘要

基因的 DNA 甲基化动态变化和结构模式没有 CpG 岛的特征较差。 CpG 与转录抑制中非 CpG 甲基化平衡的相关性尚不清楚。在这项工作中,我们分析了肌生成基因 5'侧翼的 DNA 甲基化模式,肌生成基因是肌肉分化的正调控因子,没有 CpG 岛, CpG 密度低,在 C2C12 肌肉卫星细胞和胚胎肌肉中都有研究。胚胎脑作为非表达组织进行了研究。在非表达实验条件下,观察到 CpG 和非 CpG 甲基化水平均较高。在肌肉分化和肌生成基因转录激活过程中,CpG 和非 CpG 甲基化迅速下降,具有活跃的去甲基化动力学。非 CpG 去甲基化的速度快于 CpG 去甲基化。去甲基化从最初高度甲基化的短 CpC 丰富元件扩散到几乎非甲基化状态。这些短元件具有高 CpC 含量和密度,共享一些基序,并且在很大程度上与某些与分化相关的转录因子的假定识别序列一致。我们的研究结果表明,在组织特异性基因的转录调控中,CpG 和非 CpG 活性去甲基化之间存在动态控制的平衡。富含 CpC 的短元件是甲基化机制的新结构特征,其功能可能包括启动转录关键 DNA 区域的完全去甲基化。

相似文献

2
The dynamics of myogenin site-specific demethylation is strongly correlated with its expression and with muscle differentiation.
J Biol Chem. 2001 Mar 9;276(10):7500-6. doi: 10.1074/jbc.M008234200. Epub 2000 Nov 28.
3
The methyl-CpG-binding protein CIBZ suppresses myogenic differentiation by directly inhibiting myogenin expression.
Cell Res. 2011 Nov;21(11):1578-90. doi: 10.1038/cr.2011.90. Epub 2011 May 31.
6
Molecular Characterization and Transcriptional Regulation Analysis of the Bovine PDHB Gene.
PLoS One. 2016 Jul 5;11(7):e0157445. doi: 10.1371/journal.pone.0157445. eCollection 2016.
7
Genome-wide survey reveals dynamic effects of folate supplement on DNA methylation and gene expression during C2C12 differentiation.
Physiol Genomics. 2018 Mar 1;50(3):158-168. doi: 10.1152/physiolgenomics.00094.2017. Epub 2018 Jan 12.
8
Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters.
PLoS Genet. 2007 Oct;3(10):2023-36. doi: 10.1371/journal.pgen.0030181. Epub 2007 Sep 10.
10
Transcriptional regulatory region and DNA methylation analysis of gene promoters in Gaoyou duck skeletal muscle ().
Br Poult Sci. 2019 Jun;60(3):202-208. doi: 10.1080/00071668.2019.1602250. Epub 2019 May 29.

引用本文的文献

1
The Impact of Oxidative Stress on the Epigenetics of Fetal Alcohol Spectrum Disorders.
Antioxidants (Basel). 2024 Mar 28;13(4):410. doi: 10.3390/antiox13040410.
4
Knockdown of Inhibits the Myogenic Differentiation of Chicken Myoblasts Induced by Ascorbic Acid.
Int J Mol Sci. 2022 Nov 9;23(22):13758. doi: 10.3390/ijms232213758.
5
Downregulation of epithelial sodium channel (ENaC) activity in cystic fibrosis cells by epigenetic targeting.
Cell Mol Life Sci. 2022 Apr 25;79(5):257. doi: 10.1007/s00018-022-04190-9.
6
Human non-CpG methylation patterns display both tissue-specific and inter-individual differences suggestive of underlying function.
Epigenetics. 2022 Jun;17(6):653-664. doi: 10.1080/15592294.2021.1950990. Epub 2021 Aug 30.
8
Epigenetic regulation of satellite cell fate during skeletal muscle regeneration.
Skelet Muscle. 2021 Jan 11;11(1):4. doi: 10.1186/s13395-020-00259-w.

本文引用的文献

2
Changes in Presenilin 1 gene methylation pattern in diet-induced B vitamin deficiency.
Neurobiol Aging. 2011 Feb;32(2):187-99. doi: 10.1016/j.neurobiolaging.2009.02.013. Epub 2009 Mar 28.
3
Errors in the bisulfite conversion of DNA: modulating inappropriate- and failed-conversion frequencies.
Nucleic Acids Res. 2008 Dec;36(22):e150. doi: 10.1093/nar/gkn691. Epub 2008 Nov 4.
4
DNA demethylation induced by the methyl-CpG-binding domain protein MBD3.
Gene. 2008 Sep 1;420(2):99-106. doi: 10.1016/j.gene.2008.05.009. Epub 2008 Jul 4.
5
Genome-scale DNA methylation maps of pluripotent and differentiated cells.
Nature. 2008 Aug 7;454(7205):766-70. doi: 10.1038/nature07107. Epub 2008 Jul 6.
6
The colorful history of active DNA demethylation.
Cell. 2008 Jun 27;133(7):1145-8. doi: 10.1016/j.cell.2008.06.009.
7
Regulation of p57(KIP2) during muscle differentiation: role of Egr1, Sp1 and DNA hypomethylation.
J Mol Biol. 2008 Jul 4;380(2):265-77. doi: 10.1016/j.jmb.2008.05.004. Epub 2008 May 8.
8
DNA methylation landscapes: provocative insights from epigenomics.
Nat Rev Genet. 2008 Jun;9(6):465-76. doi: 10.1038/nrg2341.
10
Epigenetic interplay between histone modifications and DNA methylation in gene silencing.
Mutat Res. 2008 Jul-Aug;659(1-2):40-8. doi: 10.1016/j.mrrev.2008.02.004. Epub 2008 Feb 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验