Chen Ting, Vemuri Baba C, Rangarajan Anand, Eisenschenk Stephan J
T. Chen, B. C. Vemuri and A. Rangarajan are with Department of CISE, University of Florida, Gainesville, FL 32601. S. J. Eisenschenk is with Department of Neurology, University of Florida.
Int J Comput Vis. 2010 Jan 1;86(1):111-124. doi: 10.1007/s11263-009-0261-x.
This paper presents a novel and robust technique for group-wise registration of point sets with unknown correspondence. We begin by defining a Havrda-Charvát (HC) entropy valid for cumulative distribution functions (CDFs) which we dub the HC Cumulative Residual Entropy (HC-CRE). Based on this definition, we propose a new measure called the CDF-HC divergence which is used to quantify the dis-similarity between CDFs estimated from each point-set in the given population of point sets. This CDF-HC divergence generalizes the CDF based Jensen-Shannon (CDF-JS) divergence introduced earlier in the literature, but is much simpler in implementation and computationally more efficient.A closed-form formula for the analytic gradient of the cost function with respect to the non-rigid registration parameters has been derived, which is conducive for efficient quasi-Newton optimization. Our CDF-HC algorithm is especially useful for unbiased point-set atlas construction and can do so without the need to establish correspondences. Mathematical analysis and experimental results indicate that this CDF-HC registration algorithm outperforms the previous group-wise point-set registration algorithms in terms of efficiency, accuracy and robustness.
本文提出了一种新颖且稳健的技术,用于对对应关系未知的点集进行分组配准。我们首先定义了一种对累积分布函数(CDF)有效的哈弗达 - 查尔瓦特(HC)熵,我们将其称为HC累积残差熵(HC - CRE)。基于此定义,我们提出了一种新的度量,称为CDF - HC散度,用于量化从给定的点集总体中的每个点集估计的CDF之间的差异。这种CDF - HC散度推广了文献中早期引入的基于CDF的詹森 - 香农(CDF - JS)散度,但实现起来要简单得多,并且计算效率更高。已经推导了代价函数相对于非刚性配准参数的解析梯度的封闭形式公式,这有利于高效的拟牛顿优化。我们的CDF - HC算法对于无偏点集图谱构建特别有用,并且无需建立对应关系即可做到这一点。数学分析和实验结果表明,这种CDF - HC配准算法在效率、准确性和稳健性方面优于先前的分组点集配准算法。