Stevenson Ian H, Rebesco James M, Hatsopoulos Nicholas G, Haga Zach, Miller Lee E, Körding Konrad P
Department of Physiology, Northwestern University, Chicago, IL 60611, USA.
IEEE Trans Neural Syst Rehabil Eng. 2009 Jun;17(3):203-13. doi: 10.1109/TNSRE.2008.2010471. Epub 2008 Dec 9.
Current multielectrode techniques enable the simultaneous recording of spikes from hundreds of neurons. To study neural plasticity and network structure it is desirable to infer the underlying functional connectivity between the recorded neurons. Functional connectivity is defined by a large number of parameters, which characterize how each neuron influences the other neurons. A Bayesian approach that combines information from the recorded spikes (likelihood) with prior beliefs about functional connectivity (prior) can improve inference of these parameters and reduce overfitting. Recent studies have used likelihood functions based on the statistics of point-processes and a prior that captures the sparseness of neural connections. Here we include a prior that captures the empirical finding that interactions tend to vary smoothly in time. We show that this method can successfully infer connectivity patterns in simulated data and apply the algorithm to spike data recorded from primary motor (M1) and premotor (PMd) cortices of a monkey. Finally, we present a new approach to studying structure in inferred connections based on a Bayesian clustering algorithm. Groups of neurons in M1 and PMd show common patterns of input and output that may correspond to functional assemblies.
当前的多电极技术能够同时记录数百个神经元的尖峰信号。为了研究神经可塑性和网络结构,推断所记录神经元之间潜在的功能连接性是很有必要的。功能连接性由大量参数定义,这些参数表征了每个神经元如何影响其他神经元。一种将记录的尖峰信号信息(似然性)与关于功能连接性的先验信念(先验)相结合的贝叶斯方法,可以改善这些参数的推断并减少过拟合。最近的研究使用了基于点过程统计的似然函数和捕捉神经连接稀疏性的先验。在这里,我们纳入了一个先验,该先验捕捉了相互作用往往随时间平滑变化的实证发现。我们表明,这种方法能够成功推断模拟数据中的连接模式,并将该算法应用于从猴子的初级运动皮层(M1)和运动前区皮层(PMd)记录的尖峰数据。最后,我们提出了一种基于贝叶斯聚类算法研究推断连接中结构的新方法。M1和PMd中的神经元群体显示出可能对应于功能组件的共同输入和输出模式。