Czanner Gabriela, Eden Uri T, Wirth Sylvia, Yanike Marianna, Suzuki Wendy A, Brown Emery N
Neuroscience Statistics Research Laboratory, Department of Anesthesia and Critical Care, Massachusetts General Hospital, Boston, MA, USA.
J Neurophysiol. 2008 May;99(5):2672-93. doi: 10.1152/jn.00343.2007. Epub 2008 Jan 23.
Recording single-neuron activity from a specific brain region across multiple trials in response to the same stimulus or execution of the same behavioral task is a common neurophysiology protocol. The raster plots of the spike trains often show strong between-trial and within-trial dynamics, yet the standard analysis of these data with the peristimulus time histogram (PSTH) and ANOVA do not consider between-trial dynamics. By itself, the PSTH does not provide a framework for statistical inference. We present a state-space generalized linear model (SS-GLM) to formulate a point process representation of between-trial and within-trial neural spiking dynamics. Our model has the PSTH as a special case. We provide a framework for model estimation, model selection, goodness-of-fit analysis, and inference. In an analysis of hippocampal neural activity recorded from a monkey performing a location-scene association task, we demonstrate how the SS-GLM may be used to answer frequently posed neurophysiological questions including, What is the nature of the between-trial and within-trial task-specific modulation of the neural spiking activity? How can we characterize learning-related neural dynamics? What are the timescales and characteristics of the neuron's biophysical properties? Our results demonstrate that the SS-GLM is a more informative tool than the PSTH and ANOVA for analysis of multiple trial neural responses and that it provides a quantitative characterization of the between-trial and within-trial neural dynamics readily visible in raster plots, as well as the less apparent fast (1-10 ms), intermediate (11-20 ms), and longer (>20 ms) timescale features of the neuron's biophysical properties.
在多个试验中记录来自特定脑区对相同刺激或执行相同行为任务的单个神经元活动,是一种常见的神经生理学实验方案。尖峰序列的光栅图通常显示出强烈的试验间和试验内动态变化,然而,使用刺激后时间直方图(PSTH)和方差分析对这些数据进行的标准分析并未考虑试验间动态变化。就其本身而言,PSTH并未提供一个用于统计推断的框架。我们提出一种状态空间广义线性模型(SS-GLM),以构建试验间和试验内神经尖峰动态变化的点过程表示。我们的模型以PSTH作为一个特殊情况。我们提供了一个用于模型估计、模型选择、拟合优度分析和推断的框架。在对一只执行位置-场景关联任务的猴子记录的海马神经活动进行的分析中,我们展示了SS-GLM如何可用于回答常见的神经生理学问题,包括:神经尖峰活动的试验间和试验内特定任务调制的本质是什么?我们如何表征与学习相关的神经动态变化?神经元生物物理特性的时间尺度和特征是什么?我们的结果表明,对于分析多个试验的神经反应,SS-GLM是比PSTH和方差分析更具信息量的工具,并且它提供了对试验间和试验内神经动态变化的定量表征,这些变化在光栅图中很容易看到,以及神经元生物物理特性不太明显的快速(1-10毫秒)、中间(11-20毫秒)和更长(>20毫秒)时间尺度特征。