Suppr超能文献

基于尖峰神经元集合重建功能神经元网络的动态贝叶斯网络方法

On the use of dynamic Bayesian networks in reconstructing functional neuronal networks from spike train ensembles.

机构信息

Electric and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA.

出版信息

Neural Comput. 2010 Jan;22(1):158-89. doi: 10.1162/neco.2009.11-08-900.

Abstract

Coordination among cortical neurons is believed to be a key element in mediating many high-level cortical processes such as perception, attention, learning, and memory formation. Inferring the structure of the neural circuitry underlying this coordination is important to characterize the highly nonlinear, time-varying interactions between cortical neurons in the presence of complex stimuli. In this work, we investigate the applicability of dynamic Bayesian networks (DBNs) in inferring the effective connectivity between spiking cortical neurons from their observed spike trains. We demonstrate that DBNs can infer the underlying nonlinear and time-varying causal interactions between these neurons and can discriminate between mono- and polysynaptic links between them under certain constraints governing their putative connectivity. We analyzed conditionally Poisson spike train data mimicking spiking activity of cortical networks of small and moderately large size. The performance was assessed and compared to other methods under systematic variations of the network structure to mimic a wide range of responses typically observed in the cortex. Results demonstrate the utility of DBN in inferring the effective connectivity in cortical networks.

摘要

皮质神经元之间的协调被认为是介导许多高级皮质过程的关键因素,如感知、注意、学习和记忆形成。推断出这种协调的神经回路的结构对于描述在复杂刺激下皮质神经元之间高度非线性、时变的相互作用非常重要。在这项工作中,我们研究了动态贝叶斯网络(DBNs)在从观察到的尖峰列车推断尖峰皮质神经元之间的有效连接的适用性。我们证明 DBN 可以推断出这些神经元之间潜在的非线性和时变因果相互作用,并在它们的假定连接受到某些约束的情况下,区分它们之间的单突触和多突触连接。我们分析了模拟皮质网络的尖峰活动的条件泊松尖峰列车数据,其性能在网络结构的系统变化下进行了评估和比较,以模拟在皮质中通常观察到的广泛的反应。结果表明,DBN 在推断皮质网络中的有效连接方面具有实用性。

相似文献

3
Which model to use for cortical spiking neurons?对于皮层发放神经元应使用哪种模型?
IEEE Trans Neural Netw. 2004 Sep;15(5):1063-70. doi: 10.1109/TNN.2004.832719.
4
Bayesian spiking neurons II: learning.贝叶斯脉冲神经元II:学习
Neural Comput. 2008 Jan;20(1):118-45. doi: 10.1162/neco.2008.20.1.118.
6
The computational structure of spike trains.尖峰脉冲序列的计算结构。
Neural Comput. 2010 Jan;22(1):121-57. doi: 10.1162/neco.2009.12-07-678.
7
Response variability in balanced cortical networks.平衡皮层网络中的反应变异性。
Neural Comput. 2006 Mar;18(3):634-59. doi: 10.1162/089976606775623261.

引用本文的文献

1
Bayesian networks for network inference in biology.用于生物学网络推断的贝叶斯网络。
J R Soc Interface. 2025 May;22(226):20240893. doi: 10.1098/rsif.2024.0893. Epub 2025 May 7.
3
4
Causal Network Inference for Neural Ensemble Activity.因果网络推断神经集合活动。
Neuroinformatics. 2021 Jul;19(3):515-527. doi: 10.1007/s12021-020-09505-4. Epub 2021 Jan 4.
5
Inferring neural information flow from spiking data.从尖峰数据推断神经信息流。
Comput Struct Biotechnol J. 2020 Sep 20;18:2699-2708. doi: 10.1016/j.csbj.2020.09.007. eCollection 2020.

本文引用的文献

4
Measure of correlation orthogonal to change in firing rate.与放电率变化正交的相关性度量。
Neural Comput. 2009 Apr;21(4):960-72. doi: 10.1162/neco.2008.03-08-729.
8
Patches of face-selective cortex in the macaque frontal lobe.猕猴额叶中面部选择性皮层区域
Nat Neurosci. 2008 Aug;11(8):877-9. doi: 10.1038/nn.2158. Epub 2008 Jul 11.
9
Perceptuo-motor interactions during prehension movements.抓握动作中的感知 - 运动交互作用。
J Neurosci. 2008 Apr 30;28(18):4726-35. doi: 10.1523/JNEUROSCI.0057-08.2008.
10
A hierarchy of temporal receptive windows in human cortex.人类皮层中时间感受窗口的层次结构。
J Neurosci. 2008 Mar 5;28(10):2539-50. doi: 10.1523/JNEUROSCI.5487-07.2008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验