Suppr超能文献

在平面脂双层中门控 G 蛋白敏感的哺乳动物 Kir3.1 原核 Kir 通道嵌合体。

Gating of a G protein-sensitive mammalian Kir3.1 prokaryotic Kir channel chimera in planar lipid bilayers.

机构信息

Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA.

出版信息

J Biol Chem. 2010 Dec 17;285(51):39790-800. doi: 10.1074/jbc.M110.151373. Epub 2010 Oct 6.

Abstract

Kir3 channels control heart rate and neuronal excitability through GTP-binding (G) protein and phosphoinositide signaling pathways. These channels were the first characterized effectors of the βγ subunits of G proteins. Because we currently lack structures of complexes between G proteins and Kir3 channels, their interactions leading to modulation of channel function are not well understood. The recent crystal structure of a chimera between the cytosolic domain of a mammalian Kir3.1 and the transmembrane region of a prokaryotic KirBac1.3 (Kir3.1 chimera) has provided invaluable structural insight. However, it was not known whether this chimera could form functional K(+) channels. Here, we achieved the functional reconstitution of purified Kir3.1 chimera in planar lipid bilayers. The chimera behaved like a bona fide Kir channel displaying an absolute requirement for PIP(2) and Mg(2+)-dependent inward rectification. The channel could also be blocked by external tertiapin Q. The three-dimensional reconstruction of the chimera by single particle electron microscopy revealed a structure consistent with the crystal structure. Channel activity could be stimulated by ethanol and activated G proteins. Remarkably, the presence of both activated Gα and Gβγ subunits was required for gating of the channel. These results confirm the Kir3.1 chimera as a valid structural and functional model of Kir3 channels.

摘要

Kir3 通道通过 GTP 结合(G)蛋白和磷酯酰肌醇信号通路来控制心率和神经元兴奋性。这些通道是 G 蛋白βγ亚基的第一个特征性效应器。由于我们目前缺乏 G 蛋白和 Kir3 通道复合物的结构,因此对于导致通道功能调节的相互作用了解甚少。最近,哺乳动物 Kir3.1 的胞质结构域与原核 KirBac1.3 的跨膜区域之间嵌合体的晶体结构(Kir3.1 嵌合体)提供了宝贵的结构见解。然而,尚不清楚该嵌合体是否能够形成功能性 K(+)通道。在这里,我们在平面脂质双层中实现了纯化的 Kir3.1 嵌合体的功能重建。嵌合体的行为类似于真正的 Kir 通道,表现出对 PIP(2)和 Mg(2+)-依赖性内向整流的绝对要求。该通道还可以被外部 tertiapin Q 阻断。通过单颗粒电子显微镜对嵌合体的三维重建显示出与晶体结构一致的结构。通道活性可以被乙醇和激活的 G 蛋白刺激。值得注意的是,通道的门控需要同时存在激活的 Gα和 Gβγ 亚基。这些结果证实了 Kir3.1 嵌合体是 Kir3 通道的有效结构和功能模型。

相似文献

1
Gating of a G protein-sensitive mammalian Kir3.1 prokaryotic Kir channel chimera in planar lipid bilayers.
J Biol Chem. 2010 Dec 17;285(51):39790-800. doi: 10.1074/jbc.M110.151373. Epub 2010 Oct 6.
2
Crystal structure of a Kir3.1-prokaryotic Kir channel chimera.
EMBO J. 2007 Sep 5;26(17):4005-15. doi: 10.1038/sj.emboj.7601828. Epub 2007 Aug 16.
3
Specificity of Gbetagamma signaling to Kir3 channels depends on the helical domain of pertussis toxin-sensitive Galpha subunits.
J Biol Chem. 2007 Nov 23;282(47):34019-30. doi: 10.1074/jbc.M704928200. Epub 2007 Sep 14.
4
PIP(2)-binding site in Kir channels: definition by multiscale biomolecular simulations.
Biochemistry. 2009 Nov 24;48(46):10926-33. doi: 10.1021/bi9013193.
5
Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification.
Nat Neurosci. 2005 Mar;8(3):279-87. doi: 10.1038/nn1411. Epub 2005 Feb 20.
8
G protein {beta}{gamma} gating confers volatile anesthetic inhibition to Kir3 channels.
J Biol Chem. 2010 Dec 31;285(53):41290-9. doi: 10.1074/jbc.M110.178541. Epub 2010 Nov 2.
10
Generation of a constitutive Na+-dependent inward-rectifier current in rat adult atrial myocytes by overexpression of Kir3.4.
J Physiol. 2007 Nov 15;585(Pt 1):3-13. doi: 10.1113/jphysiol.2007.140772. Epub 2007 Sep 20.

引用本文的文献

1
Endocannabinoid regulation of inward rectifier potassium (Kir) channels.
Front Pharmacol. 2024 Aug 26;15:1439767. doi: 10.3389/fphar.2024.1439767. eCollection 2024.
3
A molecular switch controls the impact of cholesterol on a Kir channel.
Proc Natl Acad Sci U S A. 2022 Mar 29;119(13):e2109431119. doi: 10.1073/pnas.2109431119. Epub 2022 Mar 25.
4
Kir Channel Molecular Physiology, Pharmacology, and Therapeutic Implications.
Handb Exp Pharmacol. 2021;267:277-356. doi: 10.1007/164_2021_501.
5
Methods to study phosphoinositide regulation of ion channels.
Methods Enzymol. 2021;652:49-79. doi: 10.1016/bs.mie.2021.01.025. Epub 2021 Mar 4.
6
Inwardly rectifying potassium channel 5.1: Structure, function, and possible roles in diseases.
Genes Dis. 2020 Mar 21;8(3):272-278. doi: 10.1016/j.gendis.2020.03.006. eCollection 2021 May.
7
In vitro and in silico characterization of the inhibition of Kir4.1 channels by aminoglycoside antibiotics.
Br J Pharmacol. 2020 Oct;177(19):4548-4560. doi: 10.1111/bph.15214. Epub 2020 Aug 17.
8
On the mechanism of GIRK2 channel gating by phosphatidylinositol bisphosphate, sodium, and the Gβγ dimer.
J Biol Chem. 2019 Dec 6;294(49):18934-18948. doi: 10.1074/jbc.RA119.010047. Epub 2019 Oct 28.
9
Structural basis for the ethanol action on G-protein-activated inwardly rectifying potassium channel 1 revealed by NMR spectroscopy.
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):3858-3863. doi: 10.1073/pnas.1722257115. Epub 2018 Mar 26.
10
Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus.
J Biol Chem. 2017 Apr 14;292(15):6135-6147. doi: 10.1074/jbc.M116.753350. Epub 2017 Feb 17.

本文引用的文献

1
Channelopathies linked to plasma membrane phosphoinositides.
Pflugers Arch. 2010 Jul;460(2):321-41. doi: 10.1007/s00424-010-0828-y. Epub 2010 Apr 16.
2
Inwardly rectifying potassium channels: their structure, function, and physiological roles.
Physiol Rev. 2010 Jan;90(1):291-366. doi: 10.1152/physrev.00021.2009.
3
Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 A resolution.
Science. 2009 Dec 18;326(5960):1668-74. doi: 10.1126/science.1180310.
4
PIP(2)-binding site in Kir channels: definition by multiscale biomolecular simulations.
Biochemistry. 2009 Nov 24;48(46):10926-33. doi: 10.1021/bi9013193.
5
A discrete alcohol pocket involved in GIRK channel activation.
Nat Neurosci. 2009 Aug;12(8):988-95. doi: 10.1038/nn.2358. Epub 2009 Jun 28.
6
Cryo-electron microscopy of the vacuolar ATPase motor reveals its mechanical and regulatory complexity.
J Mol Biol. 2009 Mar 6;386(4):989-99. doi: 10.1016/j.jmb.2009.01.014.
8
Image processing for electron microscopy single-particle analysis using XMIPP.
Nat Protoc. 2008;3(6):977-90. doi: 10.1038/nprot.2008.62.
9
10
Crystal structure of a Kir3.1-prokaryotic Kir channel chimera.
EMBO J. 2007 Sep 5;26(17):4005-15. doi: 10.1038/sj.emboj.7601828. Epub 2007 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验