Suppr超能文献

与质膜磷酸肌醇有关的通道病。

Channelopathies linked to plasma membrane phosphoinositides.

机构信息

Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA.

出版信息

Pflugers Arch. 2010 Jul;460(2):321-41. doi: 10.1007/s00424-010-0828-y. Epub 2010 Apr 16.

Abstract

The plasma membrane phosphoinositide phosphatidylinositol 4,5-bisphosphate (PIP2) controls the activity of most ion channels tested thus far through direct electrostatic interactions. Mutations in channel proteins that change their apparent affinity to PIP2 can lead to channelopathies. Given the fundamental role that membrane phosphoinositides play in regulating channel activity, it is surprising that only a small number of channelopathies have been linked to phosphoinositides. This review proposes that for channels whose activity is PIP2-dependent and for which mutations can lead to channelopathies, the possibility that the mutations alter channel-PIP2 interactions ought to be tested. Similarly, diseases that are linked to disorders of the phosphoinositide pathway result in altered PIP2 levels. In such cases, it is proposed that the possibility for a concomitant dysregulation of channel activity also ought to be tested. The ever-growing list of ion channels whose activity depends on interactions with PIP2 promises to provide a mechanism by which defects on either the channel protein or the phosphoinositide levels can lead to disease.

摘要

质膜磷酸肌醇 4,5-二磷酸(PIP2)通过直接静电相互作用控制迄今为止测试的大多数离子通道的活性。改变通道蛋白对 PIP2 的表观亲和力的突变可导致通道病。鉴于膜磷酸肌醇在调节通道活性方面的基本作用,令人惊讶的是,只有少数通道病与磷酸肌醇有关。这篇综述提出,对于其活性依赖于 PIP2 的通道,并且对于那些突变可导致通道病的通道,应该测试这些突变是否改变了通道-PIP2 相互作用的可能性。同样,与磷酸肌醇途径紊乱相关的疾病会导致 PIP2 水平改变。在这种情况下,建议也应该测试通道活性同时失调的可能性。越来越多的离子通道的活性取决于与 PIP2 的相互作用,这为通道蛋白或磷酸肌醇水平的缺陷导致疾病提供了一种机制。

相似文献

1
Channelopathies linked to plasma membrane phosphoinositides.
Pflugers Arch. 2010 Jul;460(2):321-41. doi: 10.1007/s00424-010-0828-y. Epub 2010 Apr 16.
2
Gating of G protein-sensitive inwardly rectifying K+ channels through phosphatidylinositol 4,5-bisphosphate.
J Physiol. 1999 Nov 1;520 Pt 3(Pt 3):630. doi: 10.1111/j.1469-7793.1999.00630.x.
4
Phosphoinositide-mediated gating of inwardly rectifying K(+) channels.
Pflugers Arch. 2007 Oct;455(1):83-95. doi: 10.1007/s00424-007-0276-5. Epub 2007 May 23.
5
Non-selective cation channels, transient receptor potential channels and ischemic stroke.
Biochim Biophys Acta. 2007 Aug;1772(8):947-57. doi: 10.1016/j.bbadis.2007.03.004. Epub 2007 Mar 19.
6
Regulation of Kir channels in bovine retinal pigment epithelial cells by phosphatidylinositol 4,5-bisphosphate.
Am J Physiol Cell Physiol. 2009 Oct;297(4):C1001-11. doi: 10.1152/ajpcell.00250.2009. Epub 2009 Jul 29.
8
PIP2--the master key.
Neuron. 2007 Aug 16;55(4):537-8. doi: 10.1016/j.neuron.2007.08.001.
9
Phosphoinositides alter lipid bilayer properties.
J Gen Physiol. 2013 Jun;141(6):673-90. doi: 10.1085/jgp.201310960.
10
Activation of inwardly rectifying potassium (Kir) channels by phosphatidylinosital-4,5-bisphosphate (PIP2): interaction with other regulatory ligands.
Prog Biophys Mol Biol. 2007 Jul;94(3):320-35. doi: 10.1016/j.pbiomolbio.2006.04.001. Epub 2006 Jun 19.

引用本文的文献

1
RyR2 regulates store-operated Ca2+ entry, phospholipase C activity, and electrical excitability in the insulinoma cell line INS-1.
PLoS One. 2023 May 4;18(5):e0285316. doi: 10.1371/journal.pone.0285316. eCollection 2023.
2
Modulation of the I channel by PIP requires two binding sites per monomer.
BBA Adv. 2023 Jan 7;3:100073. doi: 10.1016/j.bbadva.2023.100073. eCollection 2023.
3
Cholesterol Regulation of Membrane Proteins Revealed by Two-Color Super-Resolution Imaging.
Membranes (Basel). 2023 Feb 20;13(2):250. doi: 10.3390/membranes13020250.
4
Applying high-performance computing in drug discovery and molecular simulation.
Natl Sci Rev. 2016 Mar;3(1):49-63. doi: 10.1093/nsr/nww003. Epub 2016 Jan 11.
5
Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation.
Chem Rev. 2019 May 8;119(9):6086-6161. doi: 10.1021/acs.chemrev.8b00608. Epub 2019 Apr 12.
6
Emerging Diversity in Lipid-Protein Interactions.
Chem Rev. 2019 May 8;119(9):5775-5848. doi: 10.1021/acs.chemrev.8b00451. Epub 2019 Feb 13.
7
Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids.
Biochem J. 2019 Jan 7;476(1):1-23. doi: 10.1042/BCJ20180022.
9
Dimerization of the voltage-sensing phosphatase controls its voltage-sensing and catalytic activity.
J Gen Physiol. 2018 May 7;150(5):683-696. doi: 10.1085/jgp.201812064. Epub 2018 Apr 25.

本文引用的文献

1
Inwardly rectifying potassium channels: their structure, function, and physiological roles.
Physiol Rev. 2010 Jan;90(1):291-366. doi: 10.1152/physrev.00021.2009.
3
Importance of ENaC-mediated sodium transport in alveolar fluid clearance using genetically-engineered mice.
Cell Physiol Biochem. 2010;25(1):63-70. doi: 10.1159/000272051. Epub 2009 Dec 22.
4
Regulation of the putative TRPV1t salt taste receptor by phosphatidylinositol 4,5-bisphosphate.
J Neurophysiol. 2010 Mar;103(3):1337-49. doi: 10.1152/jn.00883.2009. Epub 2009 Dec 23.
5
PIP3 controls synaptic function by maintaining AMPA receptor clustering at the postsynaptic membrane.
Nat Neurosci. 2010 Jan;13(1):36-44. doi: 10.1038/nn.2462. Epub 2009 Dec 13.
6
X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor.
Nature. 2009 Dec 10;462(7274):745-56. doi: 10.1038/nature08624.
8
Phosphatidylinositol (4,5)-bisphosphate regulation of N-methyl-D-aspartate receptor channels in cortical neurons.
Mol Pharmacol. 2009 Dec;76(6):1349-59. doi: 10.1124/mol.109.058701. Epub 2009 Sep 21.
9
Activation of native TRPC1/C5/C6 channels by endothelin-1 is mediated by both PIP3 and PIP2 in rabbit coronary artery myocytes.
J Physiol. 2009 Nov 15;587(Pt 22):5361-75. doi: 10.1113/jphysiol.2009.180331. Epub 2009 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验