Suppr超能文献

利用 μMRI 进一步研究关节软骨中胶原的各向异性分布。

Further studies on the anisotropic distribution of collagen in articular cartilage by μMRI.

机构信息

Department of Physics and Center for Biomedical Research, Oakland University, Rochester, Michigan, USA.

出版信息

Magn Reson Med. 2011 Mar;65(3):656-63. doi: 10.1002/mrm.22648. Epub 2010 Oct 11.

Abstract

To further study the anisotropic distribution of the collagen matrix in articular cartilage, microscopic magnetic resonance imaging experiments were carried out on articular cartilages from the central load-bearing area of three canine humeral heads at 13 μm resolution across the depth of tissue. Quantitative T2 images were acquired when the tissue blocks were rotated, relative to B0, along two orthogonal directions, both perpendicular to the normal axis of the articular surface. The T2 relaxation rate (R2) was modeled, by three fibril structural configurations (solid cone, funnel, and fan), to represent the anisotropy of the collagen fibrils in cartilage from the articular surface to the cartilage/bone interface. A set of complex and depth-dependent characteristics of collagen distribution was found in articular cartilage. In particular, there were two anisotropic components in the superficial zone and an asymmetrical component in the radial zone of cartilage. A complex model of the three-dimensional fibril architecture in articular cartilage is proposed, which has a leaf-like or layer-like structure in the radial zone, arises in a radial manner from the subchondral bone, spreads and arches passing the isotropic transitional zone, and exhibits two distinct anisotropic components (vertical and transverse) in the surface portion of the tissue.

摘要

为了进一步研究关节软骨中胶原基质的各向异性分布,在 13μm 分辨率下,对来自三个犬肱骨头部中央承重区域的关节软骨进行了微观磁共振成像实验,研究深度贯穿整个组织。当组织块相对于 B0 沿两个相互垂直的方向旋转时,获取了定量 T2 图像,这两个方向都垂直于关节表面的正常轴。通过三种纤维结构配置(实心圆锥、漏斗和扇形)对 T2 弛豫率(R2)进行建模,以代表从关节表面到软骨/骨界面的软骨中胶原纤维的各向异性。在关节软骨中发现了一组复杂且随深度变化的胶原分布特征。特别是,在浅层区域有两个各向异性成分,在软骨的径向区域有一个不对称的成分。提出了一种关节软骨中三维纤维结构的复杂模型,该模型在径向区域具有叶状或层状结构,从软骨下骨呈放射状出现,在各向同性过渡区传播和拱形,在组织的表面部分表现出两个明显的各向异性成分(垂直和横向)。

相似文献

1
Further studies on the anisotropic distribution of collagen in articular cartilage by μMRI.
Magn Reson Med. 2011 Mar;65(3):656-63. doi: 10.1002/mrm.22648. Epub 2010 Oct 11.
2
The collagen fibril structure in the superficial zone of articular cartilage by microMRI.
Osteoarthritis Cartilage. 2009 Nov;17(11):1519-28. doi: 10.1016/j.joca.2009.05.013. Epub 2009 Jun 23.
3
Relaxation anisotropy in cartilage by NMR microscopy (muMRI) at 14-microm resolution.
Magn Reson Med. 1998 Jun;39(6):941-9. doi: 10.1002/mrm.1910390612.
4
The interface region between articular cartilage and bone by μMRI and PLM at microscopic resolutions.
Microsc Res Tech. 2022 Apr;85(4):1483-1493. doi: 10.1002/jemt.24011. Epub 2021 Dec 3.
7
Three-dimensional collagen architecture in bovine articular cartilage.
J Bone Joint Surg Br. 1991 Sep;73(5):795-801. doi: 10.1302/0301-620X.73B5.1894669.
8
The structural adaptations in compressed articular cartilage by microscopic MRI (microMRI) T(2) anisotropy.
Osteoarthritis Cartilage. 2004 Nov;12(11):887-94. doi: 10.1016/j.joca.2004.07.006.
10
The depth-dependent anisotropy of articular cartilage by Fourier-transform infrared imaging (FTIRI).
Osteoarthritis Cartilage. 2007 Jul;15(7):780-8. doi: 10.1016/j.joca.2007.01.007. Epub 2007 Feb 20.

引用本文的文献

1
Orientation-Independent T2 Mapping Enhances MRI-Based Cartilage Characterization.
Ann Biomed Eng. 2025 Jun 17. doi: 10.1007/s10439-025-03774-3.
2
The interface region between articular cartilage and bone by μMRI and PLM at microscopic resolutions.
Microsc Res Tech. 2022 Apr;85(4):1483-1493. doi: 10.1002/jemt.24011. Epub 2021 Dec 3.
3
Characterization complex collagen fiber architecture in knee joint using high-resolution diffusion imaging.
Magn Reson Med. 2020 Aug;84(2):908-919. doi: 10.1002/mrm.28181. Epub 2020 Jan 21.
4
Quantitative µMRI and PLM study of rabbit humeral and femoral head cartilage at sub-10 µm resolutions.
J Orthop Res. 2020 May;38(5):1052-1062. doi: 10.1002/jor.24547. Epub 2019 Dec 12.
5
Orientation anisotropy of quantitative MRI relaxation parameters in ordered tissue.
Sci Rep. 2017 Aug 29;7(1):9606. doi: 10.1038/s41598-017-10053-2.
6
Inhomogeneous Response of Articular Cartilage: A Three-Dimensional Multiphasic Heterogeneous Study.
PLoS One. 2016 Jun 21;11(6):e0157967. doi: 10.1371/journal.pone.0157967. eCollection 2016.
7
Discrimination of healthy and osteoarthritic articular cartilage by Fourier transform infrared imaging and Fisher's discriminant analysis.
Biomed Opt Express. 2016 Jan 13;7(2):448-53. doi: 10.1364/BOE.7.000448. eCollection 2016 Feb 1.
8
Effect of partial H2O-D2O replacement on the anisotropy of transverse proton spin relaxation in bovine articular cartilage.
PLoS One. 2014 Dec 29;9(12):e115288. doi: 10.1371/journal.pone.0115288. eCollection 2014.
9
Experimental issues in the measurement of multi-component relaxation times in articular cartilage by microscopic MRI.
J Magn Reson. 2013 Oct;235:15-25. doi: 10.1016/j.jmr.2013.07.001. Epub 2013 Jul 15.
10
Effects of unloading on knee articular cartilage T1rho and T2 magnetic resonance imaging relaxation times: a case series.
J Orthop Sports Phys Ther. 2012 Jun;42(6):511-20. doi: 10.2519/jospt.2012.3975. Epub 2012 Mar 8.

本文引用的文献

1
The collagen fibril structure in the superficial zone of articular cartilage by microMRI.
Osteoarthritis Cartilage. 2009 Nov;17(11):1519-28. doi: 10.1016/j.joca.2009.05.013. Epub 2009 Jun 23.
2
Multi-components of T2 relaxation in ex vivo cartilage and tendon.
J Magn Reson. 2009 Jun;198(2):188-96. doi: 10.1016/j.jmr.2009.02.005. Epub 2009 Feb 21.
3
Averaged and depth-dependent anisotropy of articular cartilage by microscopic imaging.
Semin Arthritis Rheum. 2008 Apr;37(5):317-27. doi: 10.1016/j.semarthrit.2007.07.001. Epub 2007 Sep 21.
5
MRI assessment of cartilage ultrastructure.
NMR Biomed. 2006 Nov;19(7):855-76. doi: 10.1002/nbm.1092.
6
Split-line orientation of the talar dome articular cartilage.
Arthroscopy. 2005 May;21(5):570-3. doi: 10.1016/j.arthro.2005.01.010.
7
Split-line pattern and histologic analysis of a human osteochondral plug graft.
Arthroscopy. 2004 Jul;20 Suppl 2:39-45. doi: 10.1016/j.arthro.2004.04.043.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验