Suppr超能文献

[中医证候研究中分类算法的方法学研究]

[Methodology study of classification algorithm in traditional Chinese medicine syndrome study].

作者信息

Zhou Min, Chu Na, Li Jie

机构信息

Center of Traditional Chinese Medicine Information Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

出版信息

Zhong Xi Yi Jie He Xue Bao. 2010 Oct;8(10):911-6. doi: 10.3736/jcim20101002.

Abstract

Study of traditional Chinese medicine (TCM) syndromes is a key to the research of TCM modernization, and the core is the classification and diagnostic criteria of syndromes. The purpose of this article is to review the usage of classification algorithms of data mining in TCM syndrome researches, and comprehensively analyze the main features of algorithms and their applications. The appropriate classification algorithm should be chosen according to different research purposes. Rough sets and cluster analysis are suitable for exploratory research without requiring a prior knowledge. Fuzzy sets theory, neural networks and decision tree are suitable for syndrome diagnostic criteria research when the classification goal is clear, because they require a prior knowledge. Among them, fuzzy sets theory could be used in combination with other classification algorithms. Thus, some new methods such as fuzzy clustering, fuzzy rough sets or fuzzy decision tree might be more suitable for TCM algorithm classification research. It is suggested that some novel classification algorithms need to be developed to fit the condition of TCM syndrome, based on the interdisciplinary theories and technologies.

摘要

中医证候研究是中医现代化研究的关键,其核心是证候的分类与诊断标准。本文旨在综述数据挖掘分类算法在中医证候研究中的应用,并全面分析算法的主要特点及其应用情况。应根据不同的研究目的选择合适的分类算法。粗糙集和聚类分析适用于探索性研究,无需先验知识。模糊集理论、神经网络和决策树适用于分类目标明确的证候诊断标准研究,因为它们需要先验知识。其中,模糊集理论可与其他分类算法结合使用。因此,一些新方法如模糊聚类、模糊粗糙集或模糊决策树可能更适合中医算法分类研究。建议基于跨学科理论和技术,开发一些新颖的分类算法以适应中医证候的情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验