Liu Xuan, Kang Jin U
Department of Electrical and Computer Engineering, Johns Hopkins University 3400 N Charles St, Baltimore, MD 21218, USA.
Opt Express. 2010 Oct 11;18(21):22010-9. doi: 10.1364/OE.18.022010.
We applied compressed sensing (CS) to spectral domain optical coherence tomography (SD OCT) and studied its effectiveness. We tested the CS reconstruction by randomly undersampling the k-space SD OCT signal. We achieved this by applying pseudo-random masks to sample 62.5%, 50%, and 37.5% of the CCD camera pixels. OCT images are reconstructed by solving an optimization problem that minimizes the l(1) norm of a transformed image to enforce sparsity, subject to data consistency constraints. CS could allow an array detector with fewer pixels to reconstruct high resolution OCT images while reducing the total amount of data required to process the images.
我们将压缩感知(CS)应用于光谱域光学相干断层扫描(SD OCT)并研究其有效性。我们通过对k空间SD OCT信号进行随机欠采样来测试CS重建。我们通过应用伪随机掩码对电荷耦合器件(CCD)相机像素的62.5%、50%和37.5%进行采样来实现这一点。通过求解一个优化问题来重建OCT图像,该优化问题在数据一致性约束下,使变换后图像的l(1)范数最小化以增强稀疏性。CS能够让具有较少像素的阵列探测器重建高分辨率OCT图像,同时减少处理图像所需的数据总量。