Suppr超能文献

压缩感知光谱域光学相干断层扫描:压缩感知在光谱域光学相干断层扫描中的应用。

Compressive SD-OCT: the application of compressed sensing in spectral domain optical coherence tomography.

作者信息

Liu Xuan, Kang Jin U

机构信息

Department of Electrical and Computer Engineering, Johns Hopkins University 3400 N Charles St, Baltimore, MD 21218, USA.

出版信息

Opt Express. 2010 Oct 11;18(21):22010-9. doi: 10.1364/OE.18.022010.

Abstract

We applied compressed sensing (CS) to spectral domain optical coherence tomography (SD OCT) and studied its effectiveness. We tested the CS reconstruction by randomly undersampling the k-space SD OCT signal. We achieved this by applying pseudo-random masks to sample 62.5%, 50%, and 37.5% of the CCD camera pixels. OCT images are reconstructed by solving an optimization problem that minimizes the l(1) norm of a transformed image to enforce sparsity, subject to data consistency constraints. CS could allow an array detector with fewer pixels to reconstruct high resolution OCT images while reducing the total amount of data required to process the images.

摘要

我们将压缩感知(CS)应用于光谱域光学相干断层扫描(SD OCT)并研究其有效性。我们通过对k空间SD OCT信号进行随机欠采样来测试CS重建。我们通过应用伪随机掩码对电荷耦合器件(CCD)相机像素的62.5%、50%和37.5%进行采样来实现这一点。通过求解一个优化问题来重建OCT图像,该优化问题在数据一致性约束下,使变换后图像的l(1)范数最小化以增强稀疏性。CS能够让具有较少像素的阵列探测器重建高分辨率OCT图像,同时减少处理图像所需的数据总量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4f4/3408931/c561b2e300b7/oe-18-21-22010-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验