Wang Junzhe, Wohlberg Brendt, Adamson R B A
School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada.
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Biomed Opt Express. 2022 Mar 3;13(4):1834-1854. doi: 10.1364/BOE.447394. eCollection 2022 Apr 1.
In this study, we demonstrate a sparsity-regularized, complex, blind deconvolution method for removing sidelobe artefacts and stochastic noise from optical coherence tomography (OCT) images. Our method estimates the complex scattering amplitude of tissue on a line-by-line basis by estimating and deconvolving the complex, one-dimensional axial point spread function (PSF) from measured OCT A-line data. We also present a strategy for employing a sparsity weighting mask to mitigate the loss of speckle brightness within tissue-containing regions caused by the sparse deconvolution. Qualitative and quantitative analyses show that this approach suppresses sidelobe artefacts and background noise better than traditional spectral reshaping techniques, with negligible loss of tissue structure. The technique is particularly useful for emerging OCT applications where OCT images contain strong specular reflections at air-tissue boundaries that create large sidelobe artefacts.
在本研究中,我们展示了一种用于从光学相干断层扫描(OCT)图像中去除旁瓣伪影和随机噪声的稀疏正则化、复数、盲解卷积方法。我们的方法通过从测量的OCT A线数据中估计并解卷积复数一维轴向点扩散函数(PSF),逐行估计组织的复数散射幅度。我们还提出了一种策略,即采用稀疏加权掩膜来减轻由稀疏解卷积导致的含组织区域内散斑亮度损失。定性和定量分析表明,该方法比传统的光谱重塑技术能更好地抑制旁瓣伪影和背景噪声,且组织结构损失可忽略不计。该技术对于新兴的OCT应用特别有用,在这些应用中,OCT图像在空气-组织边界处包含强烈的镜面反射,会产生大的旁瓣伪影。