Suppr超能文献

分析活性部位的拓扑结构:口袋和亚口袋的预测。

Analyzing the topology of active sites: on the prediction of pockets and subpockets.

机构信息

Research Group for Computational Molecular Design, Bundesstr. 43, 20146 Hamburg, Germany.

出版信息

J Chem Inf Model. 2010 Nov 22;50(11):2041-52. doi: 10.1021/ci100241y. Epub 2010 Oct 14.

Abstract

Automated prediction of protein active sites is essential for large-scale protein function prediction, classification, and druggability estimates. In this work, we present DoGSite, a new structure-based method to predict active sites in proteins based on a Difference of Gaussian (DoG) approach which originates from image processing. In contrast to existing methods, DoGSite splits predicted pockets into subpockets, revealing a refined description of the topology of active sites. DoGSite correctly predicts binding pockets for over 92% of the PDBBind and the scPDB data set, being in line with the best-performing methods available. In 63% of the PDBBind data set the detected pockets can be subdivided into smaller subpockets. The cocrystallized ligand is contained in exactly one subpocket in 87% of the predictions. Furthermore, we introduce a more precise prediction performance measure by taking the pairwise ligand and pocket coverage into account. In 90% of the cases DoGSite predicts a pocket that contains at least half of the ligand. In 70% of the cases additionally more than a quarter of the respective pocket itself is covered by the cocrystallized ligand. Consideration of subpockets produces an increase in coverage yielding a success rate of 83% for the latter measure.

摘要

自动预测蛋白质的活性位点对于大规模的蛋白质功能预测、分类和药物可及性估计至关重要。在这项工作中,我们提出了一种新的基于结构的方法 DoGSite,用于基于高斯差分(DoG)方法预测蛋白质中的活性位点,该方法源自图像处理。与现有方法不同,DoGSite 将预测的口袋分为亚口袋,从而更精细地描述了活性位点的拓扑结构。DoGSite 正确预测了 PDBBind 和 scPDB 数据集超过 92%的结合口袋,与现有的表现最佳的方法相当。在 PDBBind 数据集中的 63%的口袋可以进一步细分为更小的亚口袋。在 87%的预测中,共结晶配体恰好位于一个亚口袋中。此外,我们通过考虑配体和口袋的成对覆盖率,引入了一种更精确的预测性能度量。在 90%的情况下,DoGSite 预测的口袋至少包含一半的配体。在 70%的情况下,配体本身的四分之一以上被共结晶配体覆盖。考虑亚口袋会增加覆盖率,后者的成功率达到 83%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验