Suppr超能文献

DrugPred:一种基于结构的方法,使用广泛的非冗余数据集来预测蛋白质的可成药性。

DrugPred: a structure-based approach to predict protein druggability developed using an extensive nonredundant data set.

机构信息

College of Life Sciences, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dow St, Dundee DD1 5EH, UK.

出版信息

J Chem Inf Model. 2011 Nov 28;51(11):2829-42. doi: 10.1021/ci200266d. Epub 2011 Oct 13.

Abstract

Judging if a protein is able to bind orally available molecules with high affinity, i.e. if a protein is druggable, is an important step in target assessment. In order to derive a structure-based method to predict protein druggability, a comprehensive, nonredundant data set containing crystal structures of 71 druggable and 44 less druggable proteins was compiled by literature search and data mining. This data set was subsequently used to train a structure-based druggability predictor (DrugPred) using partial least-squares projection to latent structures discriminant analysis (PLS-DA). DrugPred performed well in discriminating druggable from less druggable binding sites for both internal and external predictions. The method is robust against conformational changes in the binding site and outperforms previously published methods. The superior performance of DrugPred is likely due to the size and composition of the training set which, in contrast to most previously developed methods, only contains cavities that have evolved to bind a natural ligand.

摘要

判断蛋白质是否能够与可口服的分子高亲和力结合,即判断蛋白质是否具有成药性,是目标评估的重要步骤。为了得出一种基于结构的方法来预测蛋白质的成药性,通过文献检索和数据挖掘,综合了包含 71 个可成药蛋白和 44 个不易成药蛋白晶体结构的非冗余数据集。该数据集随后用于使用偏最小二乘投影到潜在结构判别分析(PLS-DA)训练基于结构的成药性预测器(DrugPred)。DrugPred 在内部和外部预测中都能很好地区分可成药和不易成药的结合部位。该方法对结合部位的构象变化具有鲁棒性,并且优于先前发表的方法。DrugPred 的优越性能可能归因于训练集的大小和组成,与大多数先前开发的方法不同,该训练集仅包含为了结合天然配体而进化出来的空腔。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验