Buck Institute for Age Research, Novato, CA 94945, USA.
Breast Cancer Res. 2010;12(5):R85. doi: 10.1186/bcr2753. Epub 2010 Oct 14.
Various multigene predictors of breast cancer clinical outcome have been commercialized, but proved to be prognostic only for hormone receptor (HR) subsets overexpressing estrogen or progesterone receptors. Hormone receptor negative (HRneg) breast cancers, particularly those lacking HER2/ErbB2 overexpression and known as triple-negative (Tneg) cases, are heterogeneous and generally aggressive breast cancer subsets in need of prognostic subclassification, since most early stage HRneg and Tneg breast cancer patients are cured with conservative treatment yet invariably receive aggressive adjuvant chemotherapy.
An unbiased search for genes predictive of distant metastatic relapse was undertaken using a training cohort of 199 node-negative, adjuvant treatment naive HRneg (including 154 Tneg) breast cancer cases curated from three public microarray datasets. Prognostic gene candidates were subsequently validated using a different cohort of 75 node-negative, adjuvant naive HRneg cases curated from three additional datasets. The HRneg/Tneg gene signature was prognostically compared with eight other previously reported gene signatures, and evaluated for cancer network associations by two commercial pathway analysis programs.
A novel set of 14 prognostic gene candidates were identified as outcome predictors: CXCL13, CLIC5, RGS4, RPS28, RFX7, EXOC7, HAPLN1, ZNF3, SSX3, HRBL, PRRG3, ABO, PRTN3, MATN1. A composite HRneg/Tneg gene signature index proved more accurate than any individual candidate gene or other reported multigene predictors in identifying cases likely to remain free of metastatic relapse. Significant positive correlations between the HRneg/Tneg index and three independent immune-related signatures (STAT1, IFN, and IR) were observed, as were consistent negative associations between the three immune-related signatures and five other proliferation module-containing signatures (MS-14, ONCO-RS, GGI, CSR/wound and NKI-70). Network analysis identified 8 genes within the HRneg/Tneg signature as being functionally linked to immune/inflammatory chemokine regulation.
A multigene HRneg/Tneg signature linked to immune/inflammatory cytokine regulation was identified from pooled expression microarray data and shown to be superior to other reported gene signatures in predicting the metastatic outcome of early stage and conservatively managed HRneg and Tneg breast cancer. Further validation of this prognostic signature may lead to new therapeutic insights and spare many newly diagnosed breast cancer patients the need for aggressive adjuvant chemotherapy.
多种乳腺癌临床结局的多基因预测因子已经商业化,但仅被证明对过度表达雌激素或孕激素受体的激素受体(HR)亚组具有预后作用。激素受体阴性(HRneg)乳腺癌,特别是那些缺乏 HER2/ErbB2 过表达且被称为三阴性(Tneg)病例的乳腺癌,是需要进行预后亚分类的异质性和侵袭性较强的乳腺癌亚组,因为大多数早期 HRneg 和 Tneg 乳腺癌患者通过保守治疗治愈,但总是接受积极的辅助化疗。
使用来自三个公共微阵列数据集的 199 例无淋巴结转移、辅助治疗前 HRneg(包括 154 例 Tneg)乳腺癌病例的训练队列,进行了一项用于寻找预测远处转移复发的基因的无偏搜索。随后使用来自另外三个数据集的 75 例无淋巴结转移、辅助治疗前 HRneg 病例的不同队列验证了候选预后基因。HRneg/Tneg 基因特征与其他八个先前报道的基因特征进行了预后比较,并使用两个商业通路分析程序评估了其与癌症网络的关联。
确定了一组新的 14 个预后候选基因作为结局预测因子:CXCL13、CLIC5、RGS4、RPS28、RFX7、EXOC7、HAPLN1、ZNF3、SSX3、HRBL、PRRG3、ABO、PRTN3、MATN1。HRneg/Tneg 基因特征指数比任何单个候选基因或其他报道的多基因预测因子更能准确识别出可能无转移复发的病例。观察到 HRneg/Tneg 指数与三个独立的免疫相关特征(STAT1、IFN 和 IR)之间存在显著的正相关性,并且三个免疫相关特征与五个包含增殖模块的其他特征(MS-14、ONCO-RS、GGI、CSR/wound 和 NKI-70)之间存在一致的负相关关系。网络分析确定 HRneg/Tneg 特征中的 8 个基因在功能上与免疫/炎症细胞因子调节有关。
从汇集的表达微阵列数据中鉴定出与免疫/炎症细胞因子调节相关的多基因 HRneg/Tneg 特征,并表明其在预测早期和保守管理的 HRneg 和 Tneg 乳腺癌的转移结局方面优于其他报道的基因特征。该预后特征的进一步验证可能会带来新的治疗见解,并使许多新诊断的乳腺癌患者免于接受积极的辅助化疗。