Suppr超能文献

过氧化物酶体增殖物激活受体 γ 共激活因子 1α(PGC-1α)神经元失活可保护小鼠免受饮食诱导的肥胖,并导致退行性病变。

Neuronal inactivation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) protects mice from diet-induced obesity and leads to degenerative lesions.

机构信息

Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA.

出版信息

J Biol Chem. 2010 Dec 10;285(50):39087-95. doi: 10.1074/jbc.M110.151688. Epub 2010 Oct 13.

Abstract

Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a transcriptional coactivator that regulates diverse aspects of energy metabolism in peripheral tissues. Mice deficient in PGC-1α have elevated metabolic rate and are resistant to diet-induced obesity. However, it remains unknown whether this alteration in energy balance is due to the action of PGC-1α in peripheral tissues or the central nervous system. In this study, we generated neuronal PGC-1α knock-out mice (BαKO) using calcium/calmodulin-dependent protein kinase IIα (CaMKIIα)-Cre to address its role in the regulation of energy balance and neuronal function. Unlike whole body PGC-1α null mice, BαKO mice have normal adaptive metabolic response to starvation and cold exposure in peripheral tissues. In contrast, BαKO mice are hypermetabolic, and similar to whole body PGC-1α null mice, are also resistant to diet-induced obesity, resulting in significantly improved metabolic profiles. Neuronal inactivation of PGC-1α leads to striatal lesions that are reminiscent of neurodegeneration in whole body PGC-1α null brain and impairs nutritional regulation of hypothalamic expression of genes that regulate systemic energy balance. Together, these studies have demonstrated a physiological role for neuronal PGC-1α in the control of energy balance. Our results also implicate CaMKIIα-positive neurons as an important part of the neural circuitry that governs energy expenditure in vivo.

摘要

过氧化物酶体增殖物激活受体 γ 共激活因子 1α(PGC-1α)是一种转录共激活因子,可调节外周组织中能量代谢的多个方面。缺乏 PGC-1α 的小鼠代谢率升高,并且对饮食诱导的肥胖具有抗性。然而,尚不清楚这种能量平衡的改变是由于 PGC-1α 在周围组织还是中枢神经系统中的作用所致。在这项研究中,我们使用钙/钙调蛋白依赖性蛋白激酶 IIα(CaMKIIα)-Cre 生成神经元 PGC-1α 敲除小鼠(BαKO),以解决其在调节能量平衡和神经元功能中的作用。与全身 PGC-1α 缺失小鼠不同,BαKO 小鼠在外周组织中对饥饿和冷暴露具有正常的适应性代谢反应。相比之下,BαKO 小鼠代谢率升高,并且与全身 PGC-1α 缺失小鼠相似,对饮食诱导的肥胖也具有抗性,导致代谢谱显著改善。神经元 PGC-1α 的失活导致纹状体损伤,类似于全身 PGC-1α 缺失大脑中的神经退行性变,并损害了调节下丘脑调节全身能量平衡的基因的营养调节。总之,这些研究证明了神经元 PGC-1α 在控制能量平衡中的生理作用。我们的结果还表明,CaMKIIα 阳性神经元是体内控制能量消耗的神经回路的重要组成部分。

相似文献

引用本文的文献

6
Irisin/PGC-1α/FNDC5 pathway in Parkinson's disease: truth under the throes.鸢尾素/PGC-1α/FNDC5 通路在帕金森病中的作用:困境下的真相。
Naunyn Schmiedebergs Arch Pharmacol. 2024 Apr;397(4):1985-1995. doi: 10.1007/s00210-023-02726-9. Epub 2023 Oct 11.

本文引用的文献

3
Methods in mammalian autophagy research.哺乳动物自噬研究方法。
Cell. 2010 Feb 5;140(3):313-26. doi: 10.1016/j.cell.2010.01.028.
4
The biology of PGC-1α and its therapeutic potential.PGC-1α 的生物学及其治疗潜力。
Trends Pharmacol Sci. 2009 Jun;30(6):322-9. doi: 10.1016/j.tips.2009.03.006. Epub 2009 May 14.
8
Mitochondrial disorders in the nervous system.神经系统中的线粒体疾病。
Annu Rev Neurosci. 2008;31:91-123. doi: 10.1146/annurev.neuro.30.051606.094302.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验