Camandola Simonetta, Mattson Mark P
Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA.
Biochim Biophys Acta. 2011 May;1813(5):965-73. doi: 10.1016/j.bbamcr.2010.10.005. Epub 2010 Oct 13.
In this mini-review/opinion article we describe evidence that multiple cellular and molecular alterations in Alzheimer's disease (AD) pathogenesis involve perturbed cellular calcium regulation, and that alterations in synaptic calcium handling may be early and pivotal events in the disease process. With advancing age neurons encounter increased oxidative stress and impaired energy metabolism, which compromise the function of proteins that control membrane excitability and subcellular calcium dynamics. Altered proteolytic cleavage of the β-amyloid precursor protein (APP) in response to the aging process in combination with genetic and environmental factors results in the production and accumulation of neurotoxic forms of amyloid β-peptide (Aβ). Aβ undergoes a self-aggregation process and concomitantly generates reactive oxygen species that can trigger membrane-associated oxidative stress which, in turn, impairs the functions of ion-motive ATPases and glutamate and glucose transporters thereby rendering neurons vulnerable to excitotoxicity and apoptosis. Mutations in presenilin-1 that cause early-onset AD increase Aβ production, but also result in an abnormal increase in the size of endoplasmic reticulum calcium stores. Some of the events in the neurodegenerative cascade can be counteracted in animal models by manipulations that stabilize neuronal calcium homeostasis including dietary energy restriction, agonists of glucagon-like peptide 1 receptors and drugs that activate mitochondrial potassium channels. Emerging knowledge of the actions of calcium upstream and downstream of Aβ provides opportunities to develop novel preventative and therapeutic interventions for AD. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
在这篇小型综述/观点文章中,我们阐述了证据,表明阿尔茨海默病(AD)发病机制中的多种细胞和分子改变涉及细胞钙调节紊乱,且突触钙处理的改变可能是疾病进程中的早期关键事件。随着年龄增长,神经元面临氧化应激增加和能量代谢受损,这会损害控制膜兴奋性和亚细胞钙动力学的蛋白质功能。β-淀粉样前体蛋白(APP)在衰老过程中响应遗传和环境因素发生蛋白水解切割改变,导致神经毒性形式的淀粉样β肽(Aβ)产生和积累。Aβ经历自我聚集过程,并伴随产生活性氧,可引发膜相关氧化应激,进而损害离子驱动ATP酶以及谷氨酸和葡萄糖转运体的功能,从而使神经元易受兴奋性毒性和凋亡影响。早发性AD相关的早老素-1突变会增加Aβ生成,但也会导致内质网钙储存量异常增加。在动物模型中,一些神经退行性级联反应中的事件可通过稳定神经元钙稳态的操作来抵消,包括饮食能量限制、胰高血糖素样肽1受体激动剂和激活线粒体钾通道的药物。对Aβ上下游钙作用的新认识为开发AD的新型预防和治疗干预措施提供了机会。本文是名为:第11届欧洲钙研讨会的特刊的一部分。