Department of Biology, Indiana University Bloomington, Bloomington, Indiana 47405, USA.
J Bacteriol. 2010 Dec;192(24):6390-400. doi: 10.1128/JB.00995-10. Epub 2010 Oct 15.
Acetyl phosphate (AcP) is a small-molecule metabolite that can act as a phosphoryl group donor for response regulators of two-component systems (TCSs). The serious human respiratory pathogen Streptococcus pneumoniae (pneumococcus) synthesizes AcP by the conventional pathway involving phosphotransacetylase and acetate kinase, encoded by pta and ackA, respectively. In addition, pneumococcus synthesizes copious amounts of AcP and hydrogen peroxide (H(2)O(2)) by pyruvate oxidase, which is encoded by spxB. To assess possible roles of AcP in pneumococcal TCS regulation and metabolism, we constructed strains with combinations of spxB, pta, and ackA mutations and determined their effects on ATP, AcP, and H(2)O(2) production. Unexpectedly, ΔackA mutants were unstable and readily accumulated primary suppressor mutations in spxB or its positive regulator, spxR, thereby reducing H(2)O(2) and AcP levels, and secondary capsule mutations in cps2E or cps2C. ΔackA ΔspxB mutants contained half the cellular amount of ATP as a ΔspxB or spxB(+) strain. Acetate addition and anaerobic growth experiments suggested decreased ATP, rather than increased AcP, as a reason that ΔackA mutants accumulated spxB or spxR suppressors, although experimental manipulation of the AcP amount was limited. This finding and other considerations suggest that coping with endogenously produced H(2)O(2) may require energy. Starting with a ΔspxB mutant, we constructed Δpta, ΔackA, and Δpta ΔackA mutants. Epistasis and microarray experiment results were consistent with a role for the SpxB-Pta-AckA pathway in expression of the regulons controlled by the WalRK(Spn), CiaRH(Spn), and LiaSR(Spn) TCSs involved in sensing cell wall status. However, AcP likely does not play a physiological role in TCS sensing in S. pneumoniae.
乙酰磷酸(AcP)是一种小分子代谢物,可以作为双组分系统(TCS)的反应调节剂的磷酸基团供体。严重的人类呼吸道病原体肺炎链球菌(肺炎球菌)通过涉及磷酸转乙酰酶和乙酰激酶的常规途径合成 AcP,分别由 pta 和 ackA 编码。此外,肺炎球菌通过丙酮酸氧化酶合成大量的 AcP 和过氧化氢(H 2 O 2 ),该酶由 spxB 编码。为了评估 AcP 在肺炎球菌 TCS 调节和代谢中的可能作用,我们构建了具有 spxB、pta 和 ackA 突变组合的菌株,并确定了它们对 ATP、AcP 和 H 2 O 2 产生的影响。出乎意料的是,ΔackA 突变体不稳定,容易在 spxB 或其正调控因子 spxR 中积累主要抑制突变,从而降低 H 2 O 2 和 AcP 水平,并在 cps2E 或 cps2C 中积累次要荚膜突变。ΔackA ΔspxB 突变体的细胞内 ATP 含量为 ΔspxB 或 spxB(+) 菌株的一半。添加乙酸和厌氧生长实验表明,减少 ATP 而不是增加 AcP 是ΔackA 突变体积累 spxB 或 spxR 抑制子的原因,尽管对 AcP 量的实验操作受到限制。这一发现和其他考虑表明,应对内源性产生的 H 2 O 2 需要能量。从一个ΔspxB 突变体开始,我们构建了Δpta、ΔackA 和Δpta ΔackA 突变体。上位性和微阵列实验结果表明,SpxB-Pta-AckA 途径在 WalRK(Spn)、CiaRH(Spn) 和 LiaSR(Spn) TCS 调控的调控子的表达中起作用,这些 TCS 参与细胞壁状态的感应。然而,AcP 在肺炎链球菌 TCS 感应中可能没有发挥生理作用。