Suppr超能文献

植物状态下大脑皮层的功能隔离:一种预测临床结局的非线性方法。

Functional isolation within the cerebral cortex in the vegetative state: a nonlinear method to predict clinical outcomes.

机构信息

Post Coma and Rehabilitation Care Unit, San Raffaele Cassino, Cassino, Italy.

出版信息

Neurorehabil Neural Repair. 2011 Jan;25(1):35-42. doi: 10.1177/1545968310378508. Epub 2010 Oct 15.

Abstract

BACKGROUND

Establishing prognosis in patients in a persistent vegetative state (VS) is still challenging. Neural networks underlying consciousness may be regarded as complex systems whose outputs show a degree of unpredictability experimentally quantifiable by means of nonlinear parameters such as approximate entropy (ApEn).

OBJECTIVE

The authors propose that the VS might be the result of derangement of the above neural networks, with an ensuing decrease in complexity and mutual interconnectivity: this might lead to a functional isolation within the cerebral cortex and to a reduction in the chaotic behavior of its outputs, with monotony taking the place of unpredictability. To test this hypothesis, the authors investigated whether nonlinear dynamics methods applied to electroencephalography (EEG) recordings may be able to predict outcomes.

METHODS

A total of 38 vegetative patients and 40 matched healthy controls were investigated. At admission, all patients were assessed by means of the Extended Glasgow Outcomes Coma Scale (E-GOS) and the Coma Recovery Scale-Revised (CRS-R). At the same time an EEG recording was performed and used for time series analysis and ApEn computation. Patients were clinically reassessed at 6 months from the first evaluation.

RESULTS

Mean ApEn values (0.73, standard deviation [SD] = 0.12 vs 0.97, SD = 0.02; P < .001) were lower in patients than in controls. Patients with the lowest ApEn values either died (n = 14) or remained in a VS (n = 12), whereas patients with the highest ApEn values became minimally conscious (n = 5) or showed partial (n = 4) or full recovery (n = 3).

CONCLUSIONS

These findings suggest that dynamic correlates of neural residual complexity might help in predicting outcomes in vegetative patients.

摘要

背景

目前对于持续性植物状态(VS)患者的预后评估仍然具有挑战性。意识相关的神经网络可以被视为复杂系统,其输出具有一定程度的不可预测性,可以通过近似熵(ApEn)等非线性参数在实验中进行量化。

目的

作者提出,VS 可能是上述神经网络紊乱的结果,随之而来的是复杂性和相互连通性的降低:这可能导致大脑皮层内的功能隔离,并减少其输出的混沌行为,从而使不可预测性变为单调性。为了验证这一假设,作者研究了是否可以应用非线性动力学方法对脑电图(EEG)记录进行预测。

方法

共纳入 38 名 VS 患者和 40 名匹配的健康对照者。所有患者入院时均采用扩展格拉斯哥昏迷量表(E-GOS)和昏迷恢复量表修订版(CRS-R)进行评估。同时进行 EEG 记录,并用于时间序列分析和 ApEn 计算。患者在首次评估后 6 个月进行临床重新评估。

结果

患者的平均 ApEn 值(0.73,标准差 [SD] = 0.12 与 0.97,SD = 0.02;P <.001)低于对照组。ApEn 值最低的患者要么死亡(n = 14),要么仍处于 VS 状态(n = 12),而 ApEn 值最高的患者则变成最小意识状态(n = 5)或表现出部分(n = 4)或完全恢复(n = 3)。

结论

这些发现表明,神经残留复杂性的动态相关可能有助于预测 VS 患者的预后。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验