Suppr超能文献

静息态脑电图的神经特征对意识的检测效果如何?一项大规模临床研究。

How well do neural signatures of resting-state EEG detect consciousness? A large-scale clinical study.

作者信息

Ma Xiulin, Qi Yu, Xu Chuan, Weng Yijie, Yu Jie, Sun Xuyun, Yu Yamei, Wu Yuehao, Gao Jian, Li Jingqi, Shu Yousheng, Duan Shumin, Luo Benyan, Pan Gang

机构信息

Department of Neurobiology and Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.

NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.

出版信息

Hum Brain Mapp. 2024 Mar;45(4):e26586. doi: 10.1002/hbm.26586.

Abstract

The assessment of consciousness states, especially distinguishing minimally conscious states (MCS) from unresponsive wakefulness states (UWS), constitutes a pivotal role in clinical therapies. Despite that numerous neural signatures of consciousness have been proposed, the effectiveness and reliability of such signatures for clinical consciousness assessment still remains an intense debate. Through a comprehensive review of the literature, inconsistent findings are observed about the effectiveness of diverse neural signatures. Notably, the majority of existing studies have evaluated neural signatures on a limited number of subjects (usually below 30), which may result in uncertain conclusions due to small data bias. This study presents a systematic evaluation of neural signatures with large-scale clinical resting-state electroencephalography (EEG) signals containing 99 UWS, 129 MCS, 36 emergence from the minimally conscious state, and 32 healthy subjects (296 total) collected over 3 years. A total of 380 EEG-based metrics for consciousness detection, including spectrum features, nonlinear measures, functional connectivity, and graph-based measures, are summarized and evaluated. To further mitigate the effect of data bias, the evaluation is performed with bootstrap sampling so that reliable measures can be obtained. The results of this study suggest that relative power in alpha and delta serve as dependable indicators of consciousness. With the MCS group, there is a notable increase in the phase lag index-related connectivity measures and enhanced functional connectivity between brain regions in comparison to the UWS group. A combination of features enables the development of an automatic detector of conscious states.

摘要

意识状态的评估,尤其是区分微意识状态(MCS)和无反应觉醒状态(UWS),在临床治疗中起着关键作用。尽管已经提出了许多意识的神经特征,但这些特征用于临床意识评估的有效性和可靠性仍然存在激烈的争论。通过对文献的全面综述,发现关于各种神经特征的有效性存在不一致的结果。值得注意的是,大多数现有研究在有限数量的受试者(通常少于30人)上评估神经特征,由于小数据偏差,这可能导致结论不确定。本研究对大规模临床静息态脑电图(EEG)信号中的神经特征进行了系统评估,这些信号包含3年期间收集的99例UWS、129例MCS、36例从微意识状态苏醒的患者以及32名健康受试者(共296人)。总共总结并评估了380种基于EEG的意识检测指标,包括频谱特征、非线性测量、功能连接和基于图的测量。为了进一步减轻数据偏差的影响,采用自助抽样进行评估,以便获得可靠的测量结果。本研究结果表明,α波和δ波的相对功率是意识的可靠指标。与UWS组相比,MCS组中与相位滞后指数相关的连接测量显著增加,脑区之间的功能连接增强。多种特征的组合能够开发出一种意识状态自动检测器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c06e/10910334/3341010be3cb/HBM-45-e26586-g010.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验