Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
Proteins. 2010 Dec;78(16):3437-49. doi: 10.1002/prot.22851. Epub 2010 Oct 15.
Protein-peptide interactions mediate many of the connections in intracellular signaling networks. A generalized computational framework for atomically precise modeling of protein-peptide specificity may allow for predicting molecular interactions, anticipating the effects of drugs and genetic mutations, and redesigning molecules for new interactions. We have developed an extensible, general algorithm for structure-based prediction of protein-peptide specificity as part of the Rosetta molecular modeling package. The algorithm is not restricted to any one peptide-binding domain family and, at minimum, does not require an experimentally characterized structure of the target protein nor any information about sequence specificity; although known structural data can be incorporated when available to improve performance. We demonstrate substantial success in specificity prediction across a diverse set of peptide-binding proteins, and show how performance is affected when incorporating varying degrees of input structural data. We also illustrate how structure-based approaches can provide atomic-level insight into mechanisms of peptide recognition and can predict the effects of point mutations on peptide specificity. Shortcomings and artifacts of our benchmark predictions are explained and limits on the generality of the method are explored. This work provides a promising foundation upon which further development of completely generalized, de novo prediction of peptide specificity may progress.
蛋白质-肽相互作用介导了细胞内信号网络中的许多连接。一种用于精确模拟蛋白质-肽特异性的原子级的通用计算框架,可能可以用于预测分子相互作用,预测药物和基因突变的影响,并重新设计用于新相互作用的分子。我们已经开发了一种可扩展的、通用的基于结构的蛋白质-肽特异性预测算法,作为 Rosetta 分子建模包的一部分。该算法不受任何一种肽结合域家族的限制,并且至少不需要目标蛋白质的实验表征结构,也不需要关于序列特异性的任何信息;尽管当有可用的已知结构数据时,可以将其纳入以提高性能。我们在一组多样化的肽结合蛋白的特异性预测中取得了显著的成功,并展示了在纳入不同程度的输入结构数据时性能如何受到影响。我们还说明了基于结构的方法如何提供肽识别机制的原子水平的洞察力,并可以预测点突变对肽特异性的影响。解释了我们的基准预测的缺点和人为因素,并探讨了该方法的通用性限制。这项工作为进一步开发完全通用的、从头开始的肽特异性预测提供了一个有希望的基础。