Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
ACS Nano. 2010 Nov 23;4(11):6417-24. doi: 10.1021/nn101050r. Epub 2010 Oct 19.
A strategy for label-free oligonucleotide (DNA) analysis has been proposed by measuring the DNA-morpholino hybridization hindered diffusion flux of probe ions Fe(CN)(6)(3-) through nanochannels of a porous anodic alumina (PAA) membrane. The flux of Fe(CN)(6)(3-) passing through the PAA nanochannels is recorded using an Au film electrochemical detector sputtered at the end of the nanochannels. Hybridization of the end-tethered morpholino in the nanochannel with DNA forms a negatively charged DNA-morpholino complex, which hinders the diffusion of Fe(CN)(6)(3-) through the nanochannels and results in a decreased flux. This flux is strongly dependent on ionic strength, nanochannel aperture, and target DNA concentration, which indicates a synergetic effect of steric and electrostatic repulsion effects in the confined nanochannels. Further comparison of the probe flux with different charge passing through the nanochannels confirms that the electrostatic effect between the probe ions and DNA dominates the hindered diffusion process. Under optimal conditions, the present nanochannel array-based DNA biosensor gives a detection limit of 0.1 nM.
一种用于非标记寡核苷酸(DNA)分析的策略是通过测量探针离子 Fe(CN)(6)(3-)通过多孔阳极氧化铝(PAA)膜纳米通道的 DNA-吗啉代杂交阻碍扩散通量来提出的。通过在纳米通道末端溅射的 Au 薄膜电化学探测器记录通过 PAA 纳米通道的 Fe(CN)(6)(3-)通量。末端固定的吗啉在纳米通道中与 DNA 杂交形成带负电荷的 DNA-吗啉代复合物,这阻碍了 Fe(CN)(6)(3-)通过纳米通道的扩散,导致通量降低。这种通量强烈依赖于离子强度、纳米通道孔径和靶 DNA 浓度,这表明在受限纳米通道中存在空间和静电排斥效应的协同作用。进一步比较不同电荷的探针通过纳米通道的通量证实,探针离子和 DNA 之间的静电相互作用主导了阻碍扩散过程。在最佳条件下,基于纳米通道阵列的 DNA 生物传感器的检测限为 0.1 nM。