Suppr超能文献

NMR 研究模块 GB1 重复序列中的结构域扩散和定向。

NMR studies on domain diffusion and alignment in modular GB1 repeats.

机构信息

Department of Structural Biology, University of Pittsburgh School of Medicine, Pennsylvania, USA.

出版信息

Biophys J. 2010 Oct 20;99(8):2636-46. doi: 10.1016/j.bpj.2010.08.036.

Abstract

Modular proteins contain individual domains that are often connected by flexible, unstructured linkers. Using a model system based on the GB1 domain, we constructed tandem repeat proteins and investigated the rotational diffusion and long-range angular ordering behavior of individual domains by measuring NMR relaxation parameters and residual dipolar couplings. Although they display almost identical protein-solvent interfaces, each domain exhibits distinct rotational diffusion and alignment properties. The diffusion tensor anisotropy of the N-terminal domain (NTD) is D(‖)/D(⊥) = 1.5-1.6, similar to that of single-GB1 domains (D(‖)/D(⊥) = 1.6-1.7), whereas the value for the C-terminal domain (CTD) is D(‖)/D(⊥) = 2.0-2.2. In addition, the two domains have different rotational correlation times. These effects are observed for linkers of three to 24 residues, irrespective of linker length. The NTD and CTD also differ in their degree of magnetic alignment, even with a flexible linker of 18 residues, exhibiting D(a) values of 7.7 Hz and 9.7 Hz, respectively. Our results suggest that diffusion differences and long-range influences may persist in modular protein systems, even for systems that have highly flexible linkers and exhibit no domain-domain or domain-linker interactions.

摘要

模块化蛋白质包含单独的结构域,这些结构域通常通过柔性、无规构象的连接子连接。我们使用基于 GB1 结构域的模型系统,构建了串联重复蛋白质,并通过测量 NMR 弛豫参数和残差偶极耦合,研究了单个结构域的旋转扩散和长程角序行为。尽管它们显示出几乎相同的蛋白-溶剂界面,但每个结构域都表现出不同的旋转扩散和排列特性。N 端结构域(NTD)的扩散张量各向异性为 D(‖)/D(⊥) = 1.5-1.6,与单个 GB1 结构域(D(‖)/D(⊥) = 1.6-1.7)相似,而 C 端结构域(CTD)的值为 D(‖)/D(⊥) = 2.0-2.2。此外,两个结构域具有不同的旋转相关时间。这些效应在 3 到 24 个残基的连接子中都观察到,与连接子长度无关。NTD 和 CTD 在磁排列程度上也存在差异,即使使用 18 个残基的柔性连接子,它们的 D(a)值分别为 7.7 Hz 和 9.7 Hz。我们的结果表明,即使对于具有高度柔性连接子且没有结构域-结构域或结构域-连接子相互作用的模块化蛋白质系统,扩散差异和远程影响也可能持续存在。

相似文献

1
NMR studies on domain diffusion and alignment in modular GB1 repeats.
Biophys J. 2010 Oct 20;99(8):2636-46. doi: 10.1016/j.bpj.2010.08.036.
2
Solution structure and ligand recognition of the WW domain pair of the yeast splicing factor Prp40.
J Mol Biol. 2002 Dec 6;324(4):807-22. doi: 10.1016/s0022-2836(02)01145-2.
3
Domain cooperativity in multidomain proteins: what can we learn from molecular alignment in anisotropic media?
J Biomol NMR. 2011 Sep;51(1-2):131-50. doi: 10.1007/s10858-011-9548-7. Epub 2011 Sep 27.
6
Solution structure of the C-terminal nucleoprotein-RNA binding domain of the vesicular stomatitis virus phosphoprotein.
J Mol Biol. 2008 Oct 3;382(2):525-38. doi: 10.1016/j.jmb.2008.07.028. Epub 2008 Jul 16.
9
Remarkable Rigidity of the Single α-Helical Domain of Myosin-VI As Revealed by NMR Spectroscopy.
J Am Chem Soc. 2019 Jun 5;141(22):9004-9017. doi: 10.1021/jacs.9b03116. Epub 2019 May 23.

引用本文的文献

2
Transient interdomain interactions in free USP14 shape its conformational ensemble.
Protein Sci. 2024 May;33(5):e4975. doi: 10.1002/pro.4975.
3
Structural Basis of the Bivalency of the TRPV1 Agonist DkTx.
Angew Chem Int Ed Engl. 2024 Jan 15;63(3):e202314621. doi: 10.1002/anie.202314621. Epub 2023 Dec 12.
4
Slow methyl axes motions in perdeuterated villin headpiece subdomain probed by cross-correlated NMR relaxation measurements.
Magnetochemistry. 2023 Jan;9(1). doi: 10.3390/magnetochemistry9010033. Epub 2023 Jan 14.
5
Bromodomain Interactions with Acetylated Histone 4 Peptides in the BRD4 Tandem Domain: Effects on Domain Dynamics and Internal Flexibility.
Biochemistry. 2022 Nov 1;61(21):2303-2318. doi: 10.1021/acs.biochem.2c00226. Epub 2022 Oct 10.
6
NMR Provides Unique Insight into the Functional Dynamics and Interactions of Intrinsically Disordered Proteins.
Chem Rev. 2022 May 25;122(10):9331-9356. doi: 10.1021/acs.chemrev.1c01023. Epub 2022 Apr 21.
7
Characterizing conformational ensembles of multi-domain proteins using anisotropic paramagnetic NMR restraints.
Biophys Rev. 2022 Jan 11;14(1):55-66. doi: 10.1007/s12551-021-00916-4. eCollection 2022 Feb.
10
Large Multidomain Protein NMR: HIV-1 Reverse Transcriptase Precursor in Solution.
Int J Mol Sci. 2020 Dec 15;21(24):9545. doi: 10.3390/ijms21249545.

本文引用的文献

1
Structure and Dynamics of Ribosomal Protein L12: An Ensemble Model Based on SAXS and NMR Relaxation.
Biophys J. 2010 May 19;98(10):2374-82. doi: 10.1016/j.bpj.2010.02.012.
3
General theoretical/computational tool for interpreting NMR spin relaxation in proteins.
J Phys Chem B. 2009 Oct 15;113(41):13613-25. doi: 10.1021/jp9046819.
4
Global and local mobility of apocalmodulin monitored through fast-field cycling relaxometry.
Biophys J. 2009 Sep 16;97(6):1765-71. doi: 10.1016/j.bpj.2009.07.005.
5
Structural insights into nonribosomal peptide enzymatic assembly lines.
Nat Prod Rep. 2009 Aug;26(8):987-1000. doi: 10.1039/b904543k. Epub 2009 May 22.
6
Evidence of reciprocal reorientation of the catalytic and hemopexin-like domains of full-length MMP-12.
J Am Chem Soc. 2008 Jun 4;130(22):7011-21. doi: 10.1021/ja710491y. Epub 2008 May 9.
7
NMR: prediction of molecular alignment from structure using the PALES software.
Nat Protoc. 2008;3(4):679-90. doi: 10.1038/nprot.2008.36.
9
Structural assembly of multidomain proteins and protein complexes guided by the overall rotational diffusion tensor.
J Am Chem Soc. 2007 Jun 27;129(25):7894-902. doi: 10.1021/ja071185d. Epub 2007 Jun 6.
10
A model of interdomain mobility in a multidomain protein.
J Am Chem Soc. 2007 Mar 21;129(11):3315-27. doi: 10.1021/ja067667r. Epub 2007 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验