Department of Physiology, Burdon Sanderson Cardiac Science Centre, Parks Road, Oxford OX1 3PT, UK.
J Physiol. 2010 Dec 15;588(Pt 24):4995-5014. doi: 10.1113/jphysiol.2010.197392. Epub 2010 Oct 20.
Our understanding of pH regulation within red blood cells (RBCs) has been inferred mainly from indirect experiments rather than from in situ measurements of intracellular pH (pH(i)). The present work shows that carboxy-SNARF-1, a pH fluorophore, when used with confocal imaging or flow cytometry, reliably reports pH(i) in individual, human RBCs, provided intracellular fluorescence is calibrated using a 'null-point' procedure. Mean pH(i) was 7.25 in CO(2)/HCO(3)(-)-buffered medium and 7.15 in Hepes-buffered medium, and varied linearly with extracellular pH (slope of 0.77). Intrinsic (non-CO(2)/HCO(3)(-)-dependent) buffering power, estimated in the intact cell (85 mmol (l cell)(-1) (pH unit)(-1) at resting pH(i)), was somewhat higher than previous estimates from cell lysates (50-70 mmol (l cell)(-1) (pH unit)(-1)). Acute displacement of pH(i) (superfusion of weak acids/bases) triggered rapid pH(i) recovery. This was mediated via membrane Cl(-)/HCO(3)(-) exchange (the AE1 gene product), irrespective of whether recovery was from an intracellular acid or base load, and with no evident contribution from other transporters such as Na(+)/H(+) exchange. H(+)-equivalent flux through AE1 was a linear function of H(+) and reversed at resting pH(i), indicating that its activity is not allosterically regulated by pH(i), in contrast to other AE isoforms. By simultaneously monitoring pH(i) and markers of cell volume, a functional link between membrane ion transport, volume and pH(i) was demonstrated. RBC pH(i) is therefore tightly regulated via AE1 activity, but modulated during changes of cell volume. A comparable volume-pH(i) link may also be important in other cell types expressing anion exchangers. Direct measurement of pH(i) should be useful in future investigations of RBC physiology and pathology.
我们对红细胞(RBC)内 pH 调节的理解主要是从间接实验中推断出来的,而不是从细胞内 pH(pH(i))的原位测量中推断出来的。本工作表明,当使用共聚焦成像或流式细胞术时,羧基-SNARF-1,一种 pH 荧光探针,只要通过“零点”程序对细胞内荧光进行校准,就可以可靠地报告单个人类 RBC 的 pH(i)。在 CO(2)/HCO(3)(-)缓冲介质中,平均 pH(i)为 7.25,在 Hepes 缓冲介质中为 7.15,并且与细胞外 pH 呈线性变化(斜率为 0.77)。在完整细胞中估计的内在(非 CO(2)/HCO(3)(-)依赖)缓冲能力(在休息时的 pH(i)下为 85 mmol(细胞)(-1)(pH 单位)(-1))略高于以前从细胞裂解物中得到的估计值(50-70 mmol(细胞)(-1)(pH 单位)(-1))。pH(i)的急性位移(弱酸/碱的灌注)引发了快速的 pH(i)恢复。这是通过膜 Cl(-)/HCO(3)(-)交换(AE1 基因产物)介导的,无论恢复是来自细胞内的酸或碱负荷,并且没有明显的来自其他转运体如 Na(+)/H(+)交换的贡献。通过 AE1 的 H(+)-等效通量是 H(+)的线性函数,并在休息时的 pH(i)处反转,表明其活性不受 pH(i)的变构调节,与其他 AE 同工型不同。通过同时监测 pH(i)和细胞体积标志物,证明了膜离子转运、体积和 pH(i)之间存在功能联系。因此,RBC pH(i)通过 AE1 活性受到严格调节,但在细胞体积变化期间会受到调节。在表达阴离子交换器的其他细胞类型中,类似的体积-pH(i)联系也可能很重要。pH(i)的直接测量在未来对 RBC 生理学和病理学的研究中应该是有用的。