ProSanos Corporation, Harrisburg, Pennsylvania 17101, USA.
J Am Med Inform Assoc. 2010 Nov-Dec;17(6):652-62. doi: 10.1136/jamia.2009.002477.
Active drug safety surveillance may be enhanced by analysis of multiple observational healthcare databases, including administrative claims and electronic health records. The objective of this study was to develop and evaluate a common data model (CDM) enabling rapid, comparable, systematic analyses across disparate observational data sources to identify and evaluate the effects of medicines.
The CDM uses a person-centric design, with attributes for demographics, drug exposures, and condition occurrence. Drug eras, constructed to represent periods of persistent drug use, are derived from available elements from pharmacy dispensings, prescriptions written, and other medication history. Condition eras aggregate diagnoses that occur within a single episode of care. Drugs and conditions from source data are mapped to biomedical ontologies to standardize terminologies and enable analyses of higher-order effects.
The CDM was applied to two source types: an administrative claims and an electronic medical record database. Descriptive statistics were used to evaluate transformation rules. Two case studies demonstrate the ability of the CDM to enable standard analyses across disparate sources: analyses of persons exposed to rofecoxib and persons with an acute myocardial infarction.
Over 43 million persons, with nearly 1 billion drug exposures and 3.7 billion condition occurrences from both databases were successfully transformed into the CDM. An analysis routine applied to transformed data from each database produced consistent, comparable results.
A CDM can normalize the structure and content of disparate observational data, enabling standardized analyses that are meaningfully comparable when assessing the effects of medicines.
通过分析多个观察性医疗保健数据库(包括行政索赔和电子健康记录),可以增强活性药物安全性监测。本研究的目的是开发和评估一个通用数据模型(CDM),以实现快速、可比、系统的分析,从而识别和评估药物的效果,该模型能够跨不同的观察性数据源进行分析。
CDM 采用以人为中心的设计,具有人口统计学、药物暴露和疾病发生的属性。药物时代是根据药房配药、处方书写和其他用药史中的可用元素构建的,用于表示持续用药的时期。疾病时代则聚合了单次医疗护理过程中发生的诊断。来自源数据的药物和疾病被映射到生物医学本体,以标准化术语并能够分析更高阶的效果。
CDM 应用于两种源类型:行政索赔数据库和电子病历数据库。使用描述性统计来评估转换规则。两个案例研究展示了 CDM 能够在不同来源之间进行标准分析的能力:罗非昔布暴露者和急性心肌梗死患者的分析。
来自两个数据库的超过 4300 万人,近 10 亿次药物暴露和 37 亿次疾病发生,成功转换为 CDM。应用于每个数据库转换后数据的分析例程产生了一致、可比的结果。
CDM 可以规范化不同观察性数据的结构和内容,实现标准化分析,在评估药物效果时具有有意义的可比性。