Suppr超能文献

THIN 数据库在 OMOP 通用数据模型中用于主动药物安全性监测的评估。

An evaluation of the THIN database in the OMOP Common Data Model for active drug safety surveillance.

机构信息

Epidemiology, Worldwide Safety Strategy, Pfizer, 219 E 42nd Street, Mail Stop 219/9/01, New York, NY 10017, USA.

出版信息

Drug Saf. 2013 Feb;36(2):119-34. doi: 10.1007/s40264-012-0009-3.

Abstract

BACKGROUND

There has been increased interest in using multiple observational databases to understand the safety profile of medical products during the postmarketing period. However, it is challenging to perform analyses across these heterogeneous data sources. The Observational Medical Outcome Partnership (OMOP) provides a Common Data Model (CDM) for organizing and standardizing databases. OMOP's work with the CDM has primarily focused on US databases. As a participant in the OMOP Extended Consortium, we implemented the OMOP CDM on the UK Electronic Healthcare Record database-The Health Improvement Network (THIN).

OBJECTIVE

The aim of the study was to evaluate the implementation of the THIN database in the OMOP CDM and explore its use for active drug safety surveillance.

METHODS

Following the OMOP CDM specification, the raw THIN database was mapped into a CDM THIN database. Ten Drugs of Interest (DOI) and nine Health Outcomes of Interest (HOI), defined and focused by the OMOP, were created using the CDM THIN database. Quantitative comparison of raw THIN to CDM THIN was performed by execution and analysis of OMOP standardized reports and additional analyses. The practical value of CDM THIN for drug safety and pharmacoepidemiological research was assessed by implementing three analysis methods: Proportional Reporting Ratio (PRR), Univariate Self-Case Control Series (USCCS) and High-Dimensional Propensity Score (HDPS). A published study using raw THIN data was selected to examine the external validity of CDM THIN.

RESULTS

Overall demographic characteristics were the same in both databases. Mapping medical and drug codes into the OMOP terminology dictionary was incomplete: 25 % medical codes and 55 % drug codes in raw THIN were not listed in the OMOP terminology dictionary, representing 6 % condition occurrence counts, 4 % procedure occurrence counts and 7 % drug exposure counts in raw THIN. Seven DOIs had <0.3 % and three DOIs had 1 % of unmapped drug exposure counts; each HOI had at least one definition with no or minimal (≤0.2 %) issues with unmapped condition occurrence counts, except for the upper gastrointestinal (UGI) ulcer hospitalization cohort. The application of PRR, USCCS and HDPS found, respectively, a sensitivity of 67, 78 and 50 %, and a specificity of 68, 59 and 76 %, suggesting that safety issues defined as known by the OMOP could be identified in CDM THIN, with imperfect performance. Similar PRR scores were produced using both CDM THIN and raw THIN, while the execution time was twice as fast on CDM THIN. There was close replication of demographic distribution, death rate and prescription pattern and trend in the published study population and the cohort of CDM THIN.

CONCLUSIONS

This research demonstrated that information loss due to incomplete mapping of medical and drug codes as well as data structure in the current CDM THIN limits its use for all possible epidemiological evaluation studies. Current HOIs and DOIs predefined by the OMOP were constructed with minimal loss of information and can be used for active surveillance methodological research. The OMOP CDM THIN can be a valuable tool for multiple aspects of pharmacoepidemiological research when the unique features of UK Electronic Health Records are incorporated in the OMOP library.

摘要

背景

人们越来越感兴趣地利用多个观察性数据库来了解上市后期间医疗产品的安全性概况。然而,跨这些异构数据源进行分析具有挑战性。观察性医学结局伙伴关系(OMOP)提供了一个通用数据模型(CDM)来组织和标准化数据库。OMOP 与 CDM 的合作主要集中在美国数据库上。作为 OMOP 扩展联盟的参与者,我们在英国电子健康记录数据库-健康改善网络(THIN)上实施了 OMOP CDM。

目的

本研究的目的是评估 THIN 数据库在 OMOP CDM 中的实施情况,并探讨其在主动药物安全性监测中的应用。

方法

根据 OMOP CDM 规范,将原始 THIN 数据库映射到 CDM THIN 数据库中。使用 CDM THIN 数据库创建了十个感兴趣的药物(DOI)和九个感兴趣的健康结果(HOI),这些药物和健康结果是由 OMOP 定义和关注的。通过执行和分析 OMOP 标准化报告和其他分析,对原始 THIN 和 CDM THIN 进行了定量比较。通过实施三种分析方法:比例报告比(PRR)、单变量自病例对照系列(USCCS)和高维倾向评分(HDPS),评估了 CDM THIN 在药物安全性和药物流行病学研究中的实际价值。选择使用原始 THIN 数据的已发表研究来检验 CDM THIN 的外部有效性。

结果

两个数据库的总体人口统计学特征相同。将医疗和药物代码映射到 OMOP 术语词典不完整:原始 THIN 中有 25%的医疗代码和 55%的药物代码未列入 OMOP 术语词典,代表原始 THIN 中出现的 6%的疾病发生次数、4%的手术发生次数和 7%的药物暴露次数。七个 DOI 有<0.3%的药物暴露次数未映射,三个 DOI 有 1%的药物暴露次数未映射;每个 HOI 都至少有一个定义,与未映射的疾病发生次数(除上消化道(UGI)溃疡住院队列外)或最小(≤0.2%)问题相关。PRR、USCCS 和 HDPS 的应用分别发现了 67%、78%和 50%的敏感性,68%、59%和 76%的特异性,这表明可以在 CDM THIN 中识别出 OMOP 定义的安全问题,但性能并不完美。使用 CDM THIN 和原始 THIN 都产生了相似的 PRR 分数,而在 CDM THIN 上执行的时间是原始 THIN 的两倍。在已发表的研究人群和 CDM THIN 的队列中,人口统计学分布、死亡率和处方模式和趋势的复制非常接近。

结论

本研究表明,由于当前 CDM THIN 中医疗和药物代码的映射不完整以及数据结构,导致信息丢失,限制了其在所有可能的流行病学评估研究中的使用。当前由 OMOP 预定义的 HOIs 和 DOIs 信息丢失最小,可以用于主动监测方法学研究。当将英国电子健康记录的独特特征纳入 OMOP 库时,OMOP CDM THIN 可以成为药物流行病学研究多个方面的有价值工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验