Suppr超能文献

自组装光捕获阵列的最佳效率。

Optimal efficiency of self-assembling light-harvesting arrays.

机构信息

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

出版信息

J Phys Chem B. 2010 Dec 16;114(49):16189-97. doi: 10.1021/jp106838k. Epub 2010 Oct 21.

Abstract

Using a classical master equation that describes energy transfer over a given lattice, we explore how energy transfer efficiency along with the photon capturing ability depends on network connectivity, on transfer rates, and on volume fractions-the numbers and relative ratio of fluorescence chromophore components, e.g., donor (D), acceptor (A), and bridge (B) chromophores. For a one-dimensional AD array, the exact analytical expression (derived in Appendix A) for efficiency shows a steep increase with a D-to-A transfer rate when a spontaneous decay is sufficiently slow. This result implies that the introduction of B chromophores can be a useful method for improving efficiency for a two-component AD system with inefficient D-to-A transfer and slow spontaneous decay. Analysis of this one-dimensional system can be extended to higher-dimensional systems with chromophores arranged in structures such as a helical or stacked-disk rod, which models the self-assembling monomers of the tobacco mosaic virus coat protein. For the stacked-disk rod, we observe the following: (1) With spacings between sites fixed, a staggered conformation is more efficient than an eclipsed conformation. (2) For a given ratio of A and D chromophores, the uniform distribution of acceptors that minimizes the mean first passage time to acceptors is a key point to designing the optimal network for a donor-acceptor system with a relatively small D-to-A transfer rate. (3) For a three-component ABD system with a large B-to-A transfer rate, a key design strategy is to increase the number of the pathways in accordance with the directional energy flow from D to B to A chromophores. These conclusions are consistent with the experimental findings reported by Francis, Fleming, and their co-workers and suggest that synthetic architectures of self-assembling supermolecules and the distributions of AD or ABD chromophore components can be optimized for efficient light-harvesting energy transfer.

摘要

使用描述给定格点上能量转移的经典主方程,我们探讨了能量转移效率以及光子捕获能力如何取决于网络连通性、转移速率和体积分数——即荧光发色团组分(例如供体 (D)、受体 (A) 和桥接 (B) 发色团)的数量和相对比例。对于一维 AD 阵列,效率的精确解析表达式(附录 A 中推导)表明,当自发衰减足够慢时,D 到 A 的转移速率的急剧增加会导致效率的急剧增加。这一结果意味着,对于具有低效 D 到 A 转移和缓慢自发衰减的两组分 AD 系统,引入 B 发色团可以是一种提高效率的有用方法。对这种一维系统的分析可以扩展到具有以螺旋或堆叠盘状棒等结构排列的发色团的更高维系统,这模拟了烟草花叶病毒外壳蛋白的自组装单体。对于堆叠盘状棒,我们观察到:(1) 当固定位点之间的间隔时,交错构象比重叠构象更有效。(2) 对于给定的 A 和 D 发色团比例,使平均首次通过时间到受体最小的受体均匀分布是为具有相对较小 D 到 A 转移速率的供体-受体系统设计最佳网络的关键。(3) 对于具有大 B 到 A 转移速率的三组分 ABD 系统,关键设计策略是根据从 D 到 B 到 A 发色团的能量流方向增加路径数量。这些结论与 Francis、Fleming 及其同事报告的实验结果一致,并表明自组装超分子的合成结构和 AD 或 ABD 发色团组分的分布可以针对高效光收集能量转移进行优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验