Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-5601, USA.
J Am Chem Soc. 2011 Aug 10;133(31):11985-93. doi: 10.1021/ja1115138. Epub 2011 Jul 15.
Designing and constructing multichromophoric, artificial light-harvesting antennas with controlled interchromophore distances, orientations, and defined donor-acceptor ratios to facilitate efficient unidirectional energy transfer is extremely challenging. Here, we demonstrate the assembly of a series of structurally well-defined artificial light-harvesting triads based on the principles of structural DNA nanotechnology. DNA nanotechnology offers addressable scaffolds for the organization of various functional molecules with nanometer scale spatial resolution. The triads are organized by a self-assembled seven-helix DNA bundle (7HB) into cyclic arrays of three distinct chromophores, reminiscent of natural photosynthetic systems. The scaffold accommodates a primary donor array (Py), secondary donor array (Cy3) and an acceptor (AF) with defined interchromophore distances. Steady-state fluorescence analyses of the triads revealed an efficient, stepwise funneling of the excitation energy from the primary donor array to the acceptor core through the intermediate donor. The efficiency of excitation energy transfer and the light-harvesting ability (antenna effect) of the triads was greatly affected by the relative ratio of the primary to the intermediate donors, as well as on the interchromophore distance. Time-resolved fluorescence analyses by time-correlated single-photon counting (TCSPC) and streak camera techniques further confirmed the cascading energy transfer processes on the picosecond time scale. Our results clearly show that DNA nanoscaffolds are promising templates for the design of artificial photonic antennas with structural characteristics that are ideal for the efficient harvesting and transport of energy.
设计和构建具有受控的发色团间距离、取向和定义的供体-受体比的多色、人工光捕获天线,以促进有效的单向能量转移是极具挑战性的。在这里,我们展示了一系列基于结构 DNA 纳米技术原理的结构明确的人工光捕获三联体的组装。DNA 纳米技术为各种功能分子的组织提供了可寻址的支架,具有纳米级空间分辨率。三联体通过自组装的七螺旋 DNA 束 (7HB) 组织成三个不同发色团的环状阵列,使人联想到自然光合作用系统。该支架容纳了具有定义的发色团间距离的初级供体阵列 (Py)、次级供体阵列 (Cy3) 和受体 (AF)。三联体的稳态荧光分析显示,激发能量从初级供体阵列通过中间供体有效地、逐步地传递到受体核心。三联体的激发能量转移效率和光捕获能力(天线效应)受到初级到中间供体的相对比例以及发色团间距离的极大影响。通过时间相关单光子计数 (TCSPC) 和条纹相机技术的时间分辨荧光分析进一步证实了皮秒时间尺度上的级联能量转移过程。我们的结果清楚地表明,DNA 纳米支架是设计具有理想的能量收集和传输结构特征的人工光子天线的有前途的模板。