School of Allied Health Sciences, Griffith University, Gold Coast, QLD 4222, Australia.
Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Gold Coast, QLD 4222, Australia.
Sci Rep. 2020 May 19;10(1):8266. doi: 10.1038/s41598-020-65257-w.
Muscle synergies provide a simple description of a complex motor control mechanism. Synergies are extracted from muscle activation patterns using factorisation methods. Despite the availability of several factorisation methods in the literature, the most appropriate method for muscle synergy extraction is currently unknown. In this study, we compared four muscle synergy extraction methods: non-negative matrix factorisation, principal component analysis, independent component analysis, and factor analysis. Probability distribution of muscle activation patterns were compared with the probability distribution of synergy excitation primitives obtained from the four factorisation methods. Muscle synergies extracted using non-negative matrix factorisation best matched the probability distribution of muscle activation patterns across different walking and running speeds. Non-negative matrix factorisation also best tracked changes in muscle activation patterns compared to the other factorisation methods. Our results suggest that non-negative matrix factorisation is the best factorisation method for identifying muscle synergies in dynamic tasks with different levels of muscle contraction.
肌肉协同作用为复杂的运动控制机制提供了简单的描述。协同作用是使用分解方法从肌肉激活模式中提取出来的。尽管文献中有几种分解方法,但目前尚不清楚哪种方法最适合提取肌肉协同作用。在这项研究中,我们比较了四种肌肉协同作用提取方法:非负矩阵分解、主成分分析、独立成分分析和因子分析。肌肉激活模式的概率分布与四种分解方法获得的协同作用激发基元的概率分布进行了比较。使用非负矩阵分解提取的肌肉协同作用最能匹配不同行走和跑步速度下肌肉激活模式的概率分布。与其他分解方法相比,非负矩阵分解还能更好地跟踪肌肉激活模式的变化。我们的结果表明,非负矩阵分解是用于识别不同肌肉收缩水平的动态任务中肌肉协同作用的最佳分解方法。