University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.
PLoS One. 2010 Oct 12;5(10):e12947. doi: 10.1371/journal.pone.0012947.
The hydrolysis of cellulose is the bottleneck in cellulosic ethanol production. The cellobiohydrolase CelS from Clostridium thermocellum catalyzes the hydrolysis of cello-oligosaccharides via inversion of the anomeric carbon. Here, to examine key features of the CelS-catalyzed reaction, QM/MM (SCCDFTB/MM) simulations are performed. The calculated free energy profile for the reaction possesses a 19 kcal/mol barrier. The results confirm the role of active site residue Glu87 as the general acid catalyst in the cleavage reaction and show that Asp255 may act as the general base. A feasible position in the reactant state of the water molecule responsible for nucleophilic attack is identified. Sugar ring distortion as the reaction progresses is quantified. The results provide a computational approach that may complement the experimental design of more efficient enzymes for biofuel production.
纤维素的水解是纤维素乙醇生产的瓶颈。热纤梭菌来源的纤维二糖水解酶 CelS 通过糖环碳原子的反转催化纤维寡糖的水解。在此,通过量子力学/分子力学(SCCDFTB/MM)模拟来研究 CelS 催化反应的关键特征。计算得到的反应自由能曲线具有 19 kcal/mol 的能垒。结果证实了活性位点残基Glu87 作为催化断裂反应的通用酸催化剂的作用,并表明 Asp255 可能作为通用碱起作用。确定了负责亲核攻击的水分子在反应物状态下的一个可行位置。随着反应的进行,糖环的扭曲被量化。结果提供了一种计算方法,可能有助于设计用于生物燃料生产的更高效酶的实验设计。