Suppr超能文献

心肌细胞胰岛素受体敲除可减轻压力超负荷诱导的冠状动脉功能障碍。

Knockout of insulin receptors in cardiomyocytes attenuates coronary arterial dysfunction induced by pressure overload.

机构信息

College of Health, and Univ. of Utah School of Medicine, Bldg. 585, Rm 168, 30 N 2030 E. Salt Lake City, UT 84132, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2011 Jan;300(1):H374-81. doi: 10.1152/ajpheart.01200.2009. Epub 2010 Oct 22.

Abstract

Ablating insulin receptors in cardiomyocytes causes subendocardial fibrosis and left ventricular (LV) dysfunction after 4 wk of transverse aortic constriction (TAC). To determine whether these maladaptive responses are precipitated by coronary vascular dysfunction, we studied mice with cardiomyocyte-restricted knock out of insulin receptors (CIRKO) and wild-type (WT) TAC mice before the onset of overt LV dysfunction. Two weeks of TAC produced comparable increases (P < 0.05 vs. respective sham) in heart weight/body weight (mg/g) in WT-TAC (8.03 ± 1.14, P < 0.05 vs. respective sham) and CIRKO-TAC (7.76 ± 1.25, P < 0.05 vs. respective sham) vs. WT-sham (5.64 ± 0.11) and CIRKO-sham (4.64 ± 0.10) mice. In addition, 2 wk of TAC were associated with similar LV geometry and function (echocardiography) and interstitial fibrosis (picrosirius red staining) in CIRKO and WT mice. Responses to acetylcholine (ACh), N(G)-monomethyl-L-arginine (l-NMMA), and sodium nitroprusside (SNP) were measured in coronary arteries that were precontracted to achieve ∼70% of maximal tension development using the thromboxane A(2) receptor mimetic U-46619 (∼3 × 10(-6) M). ACh-evoked vasorelaxation was absent in WT-TAC but was present in CIRKO-TAC albeit reduced relative to sham-operated animals. l-NMMA-evoked tension development was similar in vessels from CIRKO-TAC mice but was lower (P < 0.05) in WT-TAC animals vs. the respective sham-operated groups, and SNP-evoked vasorelaxation was similar among all mice. Thus estimates of stimulated and basal endothelial nitric oxide release were better preserved in CIRKO vs. WT mice in response to 2 wk of TAC. These findings indicate that maladaptive LV remodeling previously observed in CIRKO-TAC mice is not precipitated by coronary artery dysfunction, because CIRKO mice exhibit compensatory mechanisms (e.g., increased eNOS transcript and protein) to maintain coronary endothelial function in the setting of pressure overload.

摘要

在主动脉缩窄(TAC) 4 周后,心肌细胞胰岛素受体的消融会导致心内膜下纤维化和左心室(LV)功能障碍。为了确定这些适应性反应是否是由冠状动脉功能障碍引起的,我们在明显 LV 功能障碍发生之前,研究了心肌细胞特异性胰岛素受体敲除(CIRKO)小鼠和野生型(WT)TAC 小鼠。TAC 2 周会导致 WT-TAC(8.03±1.14,P<0.05 与相应的假手术组相比)和 CIRKO-TAC(7.76±1.25,P<0.05 与相应的假手术组相比)与 WT-假手术(5.64±0.11)和 CIRKO-假手术(4.64±0.10)小鼠的心脏重量/体重(mg/g)比增加(P<0.05)。此外,在 CIRKO 和 WT 小鼠中,2 周的 TAC 与相似的 LV 几何形状和功能(超声心动图)和间质纤维化(苦味酸天狼星红染色)相关。在使用血栓烷 A2 受体模拟物 U-46619(约 3×10-6M)将冠状动脉预收缩至约 70%最大张力发展的情况下,测量了对乙酰胆碱(ACh)、N(G)-单甲基-L-精氨酸(l-NMMA)和硝普钠(SNP)的反应。WT-TAC 中不存在 ACh 诱导的血管舒张作用,但在 CIRKO-TAC 中存在,尽管相对于假手术组动物有所减少。在 CIRKO-TAC 小鼠的血管中,l-NMMA 诱导的张力发展相似,但在 WT-TAC 动物中较低(P<0.05),与相应的假手术组相比,SNP 诱导的血管舒张作用在所有小鼠中相似。因此,在对 2 周 TAC 的反应中,CIRKO 比 WT 小鼠中刺激和基础内皮一氧化氮释放的估计值更好地保存。这些发现表明,以前在 CIRKO-TAC 小鼠中观察到的适应性 LV 重塑不是由冠状动脉功能障碍引起的,因为在压力超负荷的情况下,CIRKO 小鼠表现出代偿机制(例如,增加的 eNOS 转录本和蛋白)来维持冠状动脉内皮功能。

相似文献

1
Knockout of insulin receptors in cardiomyocytes attenuates coronary arterial dysfunction induced by pressure overload.
Am J Physiol Heart Circ Physiol. 2011 Jan;300(1):H374-81. doi: 10.1152/ajpheart.01200.2009. Epub 2010 Oct 22.
3
Contractile dysfunction in hypertrophied hearts with deficient insulin receptor signaling: possible role of reduced capillary density.
J Mol Cell Cardiol. 2005 Dec;39(6):882-92. doi: 10.1016/j.yjmcc.2005.07.017. Epub 2005 Oct 10.
4
Impaired insulin signaling accelerates cardiac mitochondrial dysfunction after myocardial infarction.
J Mol Cell Cardiol. 2009 Jun;46(6):910-8. doi: 10.1016/j.yjmcc.2009.02.014. Epub 2009 Feb 26.
7
Protective Roles of Interferon-γ in Cardiac Hypertrophy Induced by Sustained Pressure Overload.
J Am Heart Assoc. 2018 Mar 19;7(6):e008145. doi: 10.1161/JAHA.117.008145.
8
Nitric oxide synthase 3 deficiency limits adverse ventricular remodeling after pressure overload in insulin resistance.
Am J Physiol Heart Circ Physiol. 2011 Nov;301(5):H2093-101. doi: 10.1152/ajpheart.00744.2010. Epub 2011 Aug 19.
9
Minimally invasive aortic banding in mice: effects of altered cardiomyocyte insulin signaling during pressure overload.
Am J Physiol Heart Circ Physiol. 2003 Sep;285(3):H1261-9. doi: 10.1152/ajpheart.00108.2003. Epub 2003 May 8.
10
Rats are protected from the stress of chronic pressure overload compared with mice.
Am J Physiol Regul Integr Comp Physiol. 2020 May 1;318(5):R894-R900. doi: 10.1152/ajpregu.00370.2019. Epub 2020 Mar 25.

引用本文的文献

1
Mechanisms and therapeutics of insulin signaling transduction genes in diabetic cardiomyopathy: a comprehensive updated review.
Front Endocrinol (Lausanne). 2025 Jul 17;16:1589695. doi: 10.3389/fendo.2025.1589695. eCollection 2025.
2
Emerging Therapy for Diabetic Cardiomyopathy: From Molecular Mechanism to Clinical Practice.
Biomedicines. 2023 Feb 22;11(3):662. doi: 10.3390/biomedicines11030662.
3
Late-in-life treadmill training rejuvenates autophagy, protein aggregate clearance, and function in mouse hearts.
Aging Cell. 2021 Oct;20(10):e13467. doi: 10.1111/acel.13467. Epub 2021 Sep 23.
4
Insulin signaling in the heart.
Am J Physiol Endocrinol Metab. 2021 Jul 1;321(1):E130-E145. doi: 10.1152/ajpendo.00158.2021. Epub 2021 May 31.
7
Vasoreactivity of the Murine External Jugular Vein and Carotid Artery.
J Vasc Res. 2020;57(5):291-301. doi: 10.1159/000508129. Epub 2020 Jun 15.
8
Impact of age on the vasodilatory function of human skeletal muscle feed arteries.
Am J Physiol Heart Circ Physiol. 2016 Jan 15;310(2):H217-25. doi: 10.1152/ajpheart.00716.2015. Epub 2015 Nov 20.
9
Ceramide-Initiated Protein Phosphatase 2A Activation Contributes to Arterial Dysfunction In Vivo.
Diabetes. 2015 Nov;64(11):3914-26. doi: 10.2337/db15-0244. Epub 2015 Aug 7.
10
The absence of insulin signaling in the heart induces changes in potassium channel expression and ventricular repolarization.
Am J Physiol Heart Circ Physiol. 2014 Mar 1;306(5):H747-54. doi: 10.1152/ajpheart.00849.2013. Epub 2013 Dec 27.

本文引用的文献

1
Endothelial nitric oxide synthase phosphorylation in treadmill-running mice: role of vascular signalling kinases.
J Physiol. 2009 Aug 1;587(Pt 15):3911-20. doi: 10.1113/jphysiol.2009.172916. Epub 2009 Jun 8.
3
Impaired insulin signaling accelerates cardiac mitochondrial dysfunction after myocardial infarction.
J Mol Cell Cardiol. 2009 Jun;46(6):910-8. doi: 10.1016/j.yjmcc.2009.02.014. Epub 2009 Feb 26.
4
Contribution of impaired myocardial insulin signaling to mitochondrial dysfunction and oxidative stress in the heart.
Circulation. 2009 Mar 10;119(9):1272-83. doi: 10.1161/CIRCULATIONAHA.108.792101. Epub 2009 Feb 23.
6
Distinct functions of vascular endothelial and smooth muscle PPARgamma in regulation of blood pressure and vascular tone.
Toxicol Pathol. 2009 Jan;37(1):21-7. doi: 10.1177/0192623308328545. Epub 2008 Dec 15.
7
Vascular PPARgamma controls circadian variation in blood pressure and heart rate through Bmal1.
Cell Metab. 2008 Dec;8(6):482-91. doi: 10.1016/j.cmet.2008.10.009.
10
Insulin action and insulin resistance in vascular endothelium.
Curr Opin Clin Nutr Metab Care. 2007 Jul;10(4):523-30. doi: 10.1097/MCO.0b013e32819f8ecd.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验