Suppr超能文献

通过高通量毛细管检测法对大肠杆菌趋化反应的优化。

Fine-tuning of chemotactic response in E. coli determined by high-throughput capillary assay.

机构信息

The Department of Physics, The James Franck Institute, The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.

出版信息

Curr Microbiol. 2011 Mar;62(3):764-9. doi: 10.1007/s00284-010-9778-z. Epub 2010 Oct 24.

Abstract

In E. coli, chemotactic behavior exhibits perfect adaptation that is robust to changes in the intracellular concentration of the chemotactic proteins, such as CheR and CheB. However, the robustness of the perfect adaptation does not explicitly imply a robust chemotactic response. Previous studies on the robustness of the chemotactic response relied on swarming assays, which can be confounded by processes besides chemotaxis, such as cellular growth and depletion of nutrients. Here, using a high-throughput capillary assay that eliminates the effects of growth, we experimentally studied how the chemotactic response depends on the relative concentration of the chemotactic proteins. We simultaneously measured both the chemotactic response of E. coli cells to L: -aspartate and the concentrations of YFP-CheR and CheB-CFP fusion proteins. We found that the chemotactic response is fine-tuned to a specific ratio of [CheR]/[CheB] with a maximum response comparable to the chemotactic response of wild-type behavior. In contrast to adaptation in chemotaxis, that is robust and exact, capillary assays revealed that the chemotactic response in swimming bacteria is fined-tuned to wild-type level of the [CheR]/[CheB] ratio.

摘要

在大肠杆菌中,趋化行为表现出完美的适应性,对趋化蛋白(如 CheR 和 CheB)的细胞内浓度变化具有很强的鲁棒性。然而,完美适应的鲁棒性并不明确意味着趋化反应具有鲁棒性。以前关于趋化反应鲁棒性的研究依赖于群体游动测定,该测定可能受到除趋化作用以外的过程的干扰,如细胞生长和营养物质的消耗。在这里,我们使用一种消除生长影响的高通量毛细管测定法,实验研究了趋化反应如何取决于趋化蛋白的相对浓度。我们同时测量了大肠杆菌细胞对 L:-天冬氨酸的趋化反应和 YFP-CheR 和 CheB-CFP 融合蛋白的浓度。我们发现,趋化反应被精细地调谐到 CheR/CheB 的特定比例,最大响应可与野生型行为的趋化响应相媲美。与适应趋化作用的鲁棒性和精确性不同,毛细管测定法表明,游动细菌的趋化反应被精细地调谐到 CheR/CheB 比值的野生型水平。

相似文献

1
Fine-tuning of chemotactic response in E. coli determined by high-throughput capillary assay.
Curr Microbiol. 2011 Mar;62(3):764-9. doi: 10.1007/s00284-010-9778-z. Epub 2010 Oct 24.
3
CheR- and CheB-dependent chemosensory adaptation system of Rhodobacter sphaeroides.
J Bacteriol. 2001 Dec;183(24):7135-44. doi: 10.1128/JB.183.24.7135-7144.2001.
5
N-terminal half of CheB is involved in methylesterase response to negative chemotactic stimuli in Escherichia coli.
J Bacteriol. 1988 Dec;170(12):5728-38. doi: 10.1128/jb.170.12.5728-5738.1988.
6
The Chemoreceptor Sensory Adaptation System Produces Coordinated Reversals of the Flagellar Motors on an Escherichia coli Cell.
J Bacteriol. 2022 Dec 20;204(12):e0027822. doi: 10.1128/jb.00278-22. Epub 2022 Nov 30.
7
Determinants of chemotactic signal amplification in Escherichia coli.
J Mol Biol. 2001 Mar 16;307(1):119-35. doi: 10.1006/jmbi.2000.4389.
8
Requirement of the cheB function for sensory adaptation in Escherichia coli.
J Bacteriol. 1983 Dec;156(3):1228-35. doi: 10.1128/jb.156.3.1228-1235.1983.
9
Participation of CheR and CheB in the chemosensory response of Campylobacter jejuni.
Microbiology (Reading). 2011 May;157(Pt 5):1279-1289. doi: 10.1099/mic.0.047399-0. Epub 2011 Feb 3.
10
Chemotaxis in Escherichia coli: a molecular model for robust precise adaptation.
PLoS Comput Biol. 2008 Jan;4(1):e1. doi: 10.1371/journal.pcbi.0040001. Epub 2007 Nov 20.

引用本文的文献

1
An evolutionarily stable strategy to colonize spatially extended habitats.
Nature. 2019 Nov;575(7784):664-668. doi: 10.1038/s41586-019-1734-x. Epub 2019 Nov 6.
2
Mathematical Analysis of the Escherichia coli Chemotaxis Signalling Pathway.
Bull Math Biol. 2018 Apr;80(4):758-787. doi: 10.1007/s11538-018-0400-z. Epub 2018 Feb 5.
3
Non-genetic diversity modulates population performance.
Mol Syst Biol. 2016 Dec 19;12(12):895. doi: 10.15252/msb.20167044.
4
Adaptability of non-genetic diversity in bacterial chemotaxis.
Elife. 2014 Oct 3;3:e03526. doi: 10.7554/eLife.03526.
5
The relation of signal transduction to the sensitivity and dynamic range of bacterial chemotaxis.
Biophys J. 2012 Sep 19;103(6):1390-9. doi: 10.1016/j.bpj.2012.08.034.

本文引用的文献

1
Relationship between cellular response and behavioral variability in bacterial chemotaxis.
Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3304-9. doi: 10.1073/pnas.0705463105. Epub 2008 Feb 25.
2
Co-expression of signaling proteins improves robustness of the bacterial chemotaxis pathway.
J Biotechnol. 2007 Apr 30;129(2):173-80. doi: 10.1016/j.jbiotec.2007.01.024. Epub 2007 Feb 8.
3
Design principles of a bacterial signalling network.
Nature. 2005 Nov 24;438(7067):504-7. doi: 10.1038/nature04228.
4
Cellular stoichiometry of the components of the chemotaxis signaling complex.
J Bacteriol. 2004 Jun;186(12):3687-94. doi: 10.1128/JB.186.12.3687-3694.2004.
5
Summing up the noise in gene networks.
Nature. 2004 Jan 29;427(6973):415-8. doi: 10.1038/nature02257.
6
A high-throughput capillary assay for bacterial chemotaxis.
J Microbiol Methods. 2003 Oct;55(1):315-9. doi: 10.1016/s0167-7012(03)00112-x.
7
Two-component signal transduction.
Annu Rev Biochem. 2000;69:183-215. doi: 10.1146/annurev.biochem.69.1.183.
8
An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells.
Science. 2000 Mar 3;287(5458):1652-5. doi: 10.1126/science.287.5458.1652.
9
Structure of CheA, a signal-transducing histidine kinase.
Cell. 1999 Jan 8;96(1):131-41. doi: 10.1016/s0092-8674(00)80966-6.
10
Robustness in bacterial chemotaxis.
Nature. 1999 Jan 14;397(6715):168-71. doi: 10.1038/16483.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验