Emonet Thierry, Cluzel Philippe
Department of Physics, Institute for Biophysical Dynamics, and The James Franck Institute, University of Chicago, Gordon Center for Integrative Science, 929 East 57th Street, Chicago, IL 60637, USA.
Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3304-9. doi: 10.1073/pnas.0705463105. Epub 2008 Feb 25.
Over the last decades, bacterial chemotaxis in Escherichia coli has emerged as a canonical system for the study of signal transduction. A remarkable feature of this system is the coexistence of a robust adaptive behavior observed at the population level with a large fluctuating behavior in single cells [Korobkova E, Emonet T, Vilar JMG, Shimizu TS, Cluzel P (2004) Nature 428:574-578]. Using a unified stochastic model, we demonstrate that this coexistence is not fortuitous but a direct consequence of the architecture of this adaptive system. The methylation and demethylation cycles that regulate the activity of receptor-kinase complexes are ultrasensitive because they operate outside the region of first-order kinetics. As a result, the receptor-kinase that governs cellular behavior exhibits a sigmoidal activation curve. We propose that the steepness of this kinase activation curve simultaneously controls the behavioral variability in nonstimulated individual bacteria and the duration of the adaptive response to small stimuli. We predict that the fluctuating behavior and the chemotactic response of individual cells both peak within the transition region of this sigmoidal curve. Large-scale simulations of digital bacteria suggest that the chemotaxis network is tuned to simultaneously maximize both the random spread of cells in the absence of nutrients and the cellular response to gradients of attractant. This study highlights a fundamental relation from which the behavioral variability of nonstimulated cells is used to infer the timing of the cellular response to small stimuli.
在过去几十年中,大肠杆菌中的细菌趋化作用已成为研究信号转导的一个典型系统。该系统的一个显著特征是,在群体水平上观察到的强大适应性行为与单个细胞中的大幅波动行为并存[Korobkova E, Emonet T, Vilar JMG, Shimizu TS, Cluzel P(2004年)《自然》428:574 - 578]。通过一个统一的随机模型,我们证明这种共存并非偶然,而是这种适应性系统结构的直接结果。调节受体激酶复合物活性的甲基化和去甲基化循环是超敏感的,因为它们在一级动力学区域之外起作用。因此,控制细胞行为的受体激酶呈现出S形激活曲线。我们提出,这种激酶激活曲线的陡峭程度同时控制着未受刺激的单个细菌的行为变异性以及对小刺激的适应性反应持续时间。我们预测,单个细胞的波动行为和趋化反应在该S形曲线的过渡区域内均达到峰值。对数字细菌的大规模模拟表明,趋化网络经过调整,以便在缺乏营养时同时最大化细胞的随机扩散以及细胞对引诱剂梯度的反应。这项研究突出了一种基本关系,即利用未受刺激细胞的行为变异性来推断细胞对小刺激的反应时机。