School of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
IEEE Trans Vis Comput Graph. 2011 Apr;17(4):426-39. doi: 10.1109/TVCG.2010.37.
In this paper, we present two methods for accurate gradient estimation from scalar field data sampled on regular lattices. The first method is based on the multidimensional Taylor series expansion of the convolution sum and allows us to specify design criteria such as compactness and approximation power. The second method is based on a Hilbert space framework and provides a minimum error solution in the form of an orthogonal projection operating between two approximation spaces. Both methods lead to discrete filters, which can be combined with continuous reconstruction kernels to yield highly accurate estimators as compared to the current state of the art. We demonstrate the advantages of our methods in the context of volume rendering of data sampled on Cartesian and Body-Centered Cubic lattices. Our results show significant qualitative and quantitative improvements for both synthetic and real data, while incurring a moderate preprocessing and storage overhead.
在本文中,我们提出了两种从规则网格上采样的标量场数据中准确估计梯度的方法。第一种方法基于卷积和的多维泰勒级数展开,允许我们指定紧凑性和逼近能力等设计标准。第二种方法基于 Hilbert 空间框架,以两个逼近空间之间的正交投影的形式提供最小误差解。这两种方法都得到离散滤波器,可以与连续重建核结合使用,从而与现有技术相比,产生高度精确的估计器。我们在基于笛卡尔和体心立方晶格的采样数据的体绘制上下文中展示了我们方法的优势。我们的结果表明,对于合成数据和真实数据,都有显著的定性和定量改进,而预处理和存储开销适中。