Suppr超能文献

三维标量数据的边缘感知各向异性扩散。

Edge aware anisotropic diffusion for 3D scalar data.

机构信息

School of Computer Science, Simon Fraser University, Burnaby, BC, Canada.

出版信息

IEEE Trans Vis Comput Graph. 2010 Nov-Dec;16(6):1376-85. doi: 10.1109/TVCG.2010.147.

Abstract

In this paper we present a novel anisotropic diffusion model targeted for 3D scalar field data. Our model preserves material boundaries as well as fine tubular structures while noise is smoothed out. One of the major novelties is the use of the directional second derivative to define material boundaries instead of the gradient magnitude for thresholding. This results in a diffusion model that has much lower sensitivity to the diffusion parameter and smoothes material boundaries consistently compared to gradient magnitude based techniques. We empirically analyze the stability and convergence of the proposed diffusion and demonstrate its de-noising capabilities for both analytic and real data. We also discuss applications in the context of volume rendering.

摘要

本文提出了一种针对三维标量场数据的各向异性扩散模型。我们的模型在平滑噪声的同时保留了物质边界和精细的管状结构。主要的创新之一是使用方向二阶导数而不是梯度幅度来定义物质边界进行阈值处理。与基于梯度幅度的技术相比,这导致扩散模型对扩散参数的敏感性大大降低,并始终如一地平滑物质边界。我们对所提出的扩散方法的稳定性和收敛性进行了实证分析,并展示了它对分析和真实数据的去噪能力。我们还讨论了在体绘制方面的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验