Institute of Condensed Matter and Nanosciences-Nanophysics, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium.
Nat Commun. 2010 Jul 27;1:39. doi: 10.1038/ncomms1038.
In the quantum Hall regime, near integer filling factors, electrons should only be transmitted through spatially separated edge states. However, in mesoscopic systems, electronic transmission turns out to be more complex, giving rise to a large spectrum of magnetoresistance oscillations. To explain these observations, recent models put forward the theory that, as edge states come close to each other, electrons can hop between counterpropagating edge channels, or tunnel through Coulomb islands. Here, we use scanning gate microscopy to demonstrate the presence of QH Coulomb islands, and reveal the spatial structure of transport inside a QH interferometer. Locations of electron islands are found by modulating the tunnelling between edge states and confined electron orbits. Tuning the magnetic field, we unveil a continuous evolution of active electron islands. This allows to decrypt the complexity of high-magnetic-field magnetoresistance oscillations, and opens the way to further local-scale manipulations of QH localized states.
在量子霍尔效应 regime 中,接近整数填充因子时,电子应该只能通过空间分离的边缘状态传输。然而,在介观系统中,电子传输变得更加复杂,产生了大量的磁电阻振荡谱。为了解释这些观察结果,最近的模型提出了这样的理论,即当边缘状态接近时,电子可以在反向传播的边缘通道之间跳跃,或者通过库仑岛隧道。在这里,我们使用扫描门显微镜来证明 QH 库仑岛的存在,并揭示 QH 干涉仪内部传输的空间结构。通过调节边缘态和限制电子轨道之间的隧道,找到电子岛的位置。通过调节磁场,我们揭示了活跃电子岛的连续演化。这使得可以解密高磁场磁电阻振荡的复杂性,并为进一步对 QH 局域态进行局部尺度的操纵开辟了道路。