Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA.
Nat Commun. 2010 Aug 10;1:53. doi: 10.1038/ncomms1055.
Soil microorganisms dominate terrestrial biogeochemical cycles; however, we know very little about their spatial distribution and how changes in the distributions of specific groups of microbes translate into landscape and global patterns of biogeochemical processes. In this paper, we use a nested sampling scheme at scales ranging from 2 to 2,000 m to show that bacteria have significant spatial autocorrelation in community composition up to a distance of 240 m, and that this pattern is driven by changes in the relative abundance of specific bacterial clades across the landscape. Analysis of clade habitat distribution models and spatial co-correlation maps identified soil pH, plant abundance and snow depth as major variables structuring bacterial communities across this landscape, and revealed an unexpected and important oligotrophic niche for the Rhodospirillales in soil. Furthermore, our global analysis of high-elevation soils from the Andes, Rockies, Himalayas and Alaskan range shows that habitat distribution models for bacteria have a strong predictive power across the entire globe.
土壤微生物主导着陆地生物地球化学循环;然而,我们对它们的空间分布知之甚少,也不知道特定微生物群体分布的变化如何转化为景观和全球生物地球化学过程模式。在本文中,我们使用嵌套采样方案在 2 到 2000 米的范围内进行采样,结果表明,细菌的群落组成在 240 米的距离内具有显著的空间自相关,这种模式是由景观中特定细菌类群的相对丰度变化驱动的。对类群生境分布模型和空间共相关图的分析确定了土壤 pH 值、植物丰度和雪深是塑造该景观中细菌群落的主要变量,并揭示了土壤中 Rhodospirillales 一个出乎意料的重要贫营养生态位。此外,我们对安第斯山脉、落基山脉、喜马拉雅山脉和阿拉斯加地区高海拔土壤的全球分析表明,细菌的生境分布模型在全球范围内具有很强的预测能力。