Department of Cell Biology, Duke University, Durham, NC 27710, USA.
Neuropsychopharmacology. 2011 Feb;36(3):551-8. doi: 10.1038/npp.2010.186. Epub 2010 Oct 27.
Morphine is a widely used analgesic in humans that is associated with multiple untoward effects, such as addiction and physical dependence. In rodent models, morphine also induces locomotor activity. These effects likely involve functionally selective mechanisms. Indeed, G protein-coupled receptor desensitization and adaptor protein β-arrestin 2 (βarr2) through its interaction with the μ-opioid receptor regulates the analgesic but not the rewarding properties of morphine. However, βarr2 is also required for morphine-induced locomotor activity in mice, but the exact cellular and molecular mechanisms that mediate this arrestin-dependent behavior are not understood. In this study, we show that βarr2 is required for morphine-induced locomotor activity in a dopamine D1 receptor (D1R)-dependent manner and that a βarr2/phospho-ERK (βarr2/pERK) signaling complex may mediate this behavior. Systemic administration of SL327, an MEK inhibitor, inhibits morphine-induced locomotion in wild-type mice in a dose-dependent manner. Acute morphine administration to mice promotes the formation of a βarr2/pERK signaling complex. Morphine-induced locomotor activity and formation of the βarr2/pERK signaling complex is blunted in D1R knockout (D1-KO) mice and is presumably independent of D2 dopamine receptors. However, D1Rs are not required for morphine-induced reward as D1-KO mice show the same conditioned place preference for morphine as do control mice. Taken together, these results suggest a potential role for a D1R-dependent βarr2/pERK signaling complex in selectively mediating the locomotor-stimulating but not the rewarding properties of morphine.
吗啡是一种广泛应用于人类的镇痛剂,它与多种不良作用有关,如成瘾和身体依赖。在啮齿动物模型中,吗啡也会引起运动活动。这些作用可能涉及功能选择性机制。事实上,G 蛋白偶联受体脱敏和衔接蛋白β-arrestin 2(βarr2)通过与μ-阿片受体相互作用,调节吗啡的镇痛作用,但不调节其奖赏作用。然而,βarr2 也需要参与吗啡诱导的小鼠运动活动,但介导这种衔接蛋白依赖性行为的确切细胞和分子机制尚不清楚。在这项研究中,我们表明,βarr2 以多巴胺 D1 受体(D1R)依赖性方式参与吗啡诱导的运动活动,并且βarr2/磷酸化 ERK(βarr2/pERK)信号复合物可能介导这种行为。系统给予 MEK 抑制剂 SL327 以剂量依赖性方式抑制野生型小鼠中吗啡诱导的运动。急性给予吗啡可促进βarr2/pERK 信号复合物的形成。在 D1R 敲除(D1-KO)小鼠中,吗啡诱导的运动活动和βarr2/pERK 信号复合物的形成减弱,并且可能独立于 D2 多巴胺受体。然而,D1R 对于吗啡诱导的奖赏并非必需,因为 D1-KO 小鼠对吗啡的条件性位置偏好与对照小鼠相同。总之,这些结果表明,D1R 依赖性βarr2/pERK 信号复合物可能在选择性调节吗啡的运动刺激而不是奖赏作用方面发挥作用。