Suppr超能文献

自由基自旋与分子自旋阀中单分子磁体之间的磁相互作用。

Magnetic interaction between a radical spin and a single-molecule magnet in a molecular spin-valve.

机构信息

†Institut Néel-CNRS-UJF-INPG, UPR2940 25 rue des Martyrs BP 166, 38042 Grenoble cedex 9, France.

‡Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany.

出版信息

ACS Nano. 2015 Apr 28;9(4):4458-64. doi: 10.1021/acsnano.5b01056. Epub 2015 Apr 13.

Abstract

Molecular spintronics using single molecule magnets (SMMs) is a fast growing field of nanoscience that proposes to manipulate the magnetic and quantum information stored in these molecules. Herein we report evidence of a strong magnetic coupling between a metallic ion and a radical spin in one of the most extensively studied SMMs: the bis(phtalocyaninato)terbium(III) complex (TbPc2). For that we use an original multiterminal device comprising a carbon nanotube laterally coupled to the SMMs. The current through the device, sensitive to magnetic interactions, is used to probe the magnetization of a single Tb ion. Combining this electronic read-out with the transverse field technique has allowed us to measure the interaction between the terbium ion, its nuclear spin, and a single electron located on the phtalocyanine ligands. We show that the coupling between the Tb and this radical is strong enough to give extra resonances in the hysteresis loop that are not observed in the anionic form of the complex. The experimental results are then modeled by diagonalization of a three-spins Hamiltonian. This strong coupling offers perspectives for implementing nuclear and electron spin resonance techniques to perform basic quantum operations in TbPc2.

摘要

利用单分子磁体(SMMs)进行分子自旋电子学是一个快速发展的纳米科学领域,旨在操纵这些分子中存储的磁和量子信息。在这里,我们报告了一种金属离子和自由基自旋之间强磁耦合的证据,该自由基自旋存在于最广泛研究的 SMM 之一:双(酞菁)铽(III)配合物(TbPc2)中。为此,我们使用了一种由横向耦合到 SMMs 的碳纳米管组成的原始多端子器件。对磁相互作用敏感的器件中的电流用于探测单个 Tb 离子的磁化。将这种电子读出与横向磁场技术相结合,使我们能够测量铽离子、其核自旋和位于酞菁配体上的单个电子之间的相互作用。我们表明,Tb 和该自由基之间的耦合足够强,以致在复杂的阴离子形式中未观察到的磁滞回线中出现额外的共振。然后,通过对角化三自旋哈密顿量对实验结果进行建模。这种强耦合为在 TbPc2 中实现核和电子自旋共振技术以执行基本量子操作提供了前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验