Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva c. 5, SI-1000 Ljubljana, Slovenia.
J Phys Chem B. 2010 Nov 25;114(46):15085-91. doi: 10.1021/jp108052r. Epub 2010 Oct 28.
Water is a poor solvent for nonpolar solutes. Water containing ions is an even poorer solvent. According to standard terminology, the tendency of salts to precipitate oils from water is called salting-out. However, interestingly, some salt ions, such as tetramethylammonium (TMA), cause instead the salting-in of hydrophobic solutes. Even more puzzling, there is a systematic dependence on solute size. TMA causes the salting-out of small hydrophobes and the salting-in of larger nonpolar solutes. We study these effects using NPT Monte Carlo simulations of the Mercedes-Benz (MB) + dipole model of water, which was previously shown to account for hydrophobic effects and ion solubilities in water. The present model gives a structural interpretation for the thermodynamics of salting-in. The TMA structure allows deep penetration by a first shell of waters, the dipoles of which interact electrostatically with the ion. This first water shell sets up a second water shell that is shaped to act as a receptacle that binds the nonpolar solute. In this way, a nonpolar solute can actually bind more tightly to the TMA ion than to another hydrophobe, leading to the increased solubility and salting-in. Such structuring may also explain why molecular ions do not follow the same charge density series as atomic ions do.
水是一种对非极性溶质溶解能力较差的溶剂。含有离子的水则更是一种较差的溶剂。根据标准术语,盐将油从水中沉淀出来的趋势称为盐析。然而,有趣的是,一些盐离子,如四甲基铵(TMA),反而会导致疏水分子的盐溶。更令人困惑的是,这种现象与溶质大小存在系统的依赖性。TMA 会导致小疏水分子的盐析和较大非极性溶质的盐溶。我们使用 NPT Monte Carlo 模拟 Mercedes-Benz(MB)+偶极子模型的水来研究这些效应,该模型先前已被证明可以解释疏水效应和水中离子的溶解度。目前的模型为盐溶的热力学提供了结构解释。TMA 的结构允许第一层水分子的深入渗透,这些水分子的偶极子与离子发生静电相互作用。这个第一层水分子壳建立了第二层水分子壳,其形状可以作为容纳非极性溶质的容器。这样,非极性溶质实际上可以比另一个疏水分子更紧密地与 TMA 离子结合,导致溶解度增加和盐溶。这种结构也可能解释为什么分子离子与原子离子的电荷密度系列不同。