Suppr超能文献

单鼠李糖和二鼠李糖鼠李糖脂在气-液界面的自组装及吸附和解吸行为及其混合物。

Solution self-assembly and adsorption at the air-water interface of the monorhamnose and dirhamnose rhamnolipids and their mixtures.

机构信息

Physical and Theoretical Chemistry Department, University of Oxford, South Parks Road, Oxford, UK.

出版信息

Langmuir. 2010 Dec 7;26(23):18281-92. doi: 10.1021/la1031812. Epub 2010 Oct 28.

Abstract

The self-assembly in solution and adsorption at the air-water interface, measured by small-angle neutron scattering, SANS, and neutron reflectivity, NR, of the monorhamnose and dirhamnose rhamnolipids (R1, R2) and their mixtures, are discussed. The production of the deuterium-labeled rhamnolipids (required for the NR studies) from a Pseudomonas aeruginosa culture and their separation into the pure R1 and R2 components is described. At the air-water interface, R1 and R2 exhibit Langmuir-like adsorption isotherms, with saturated area/molecule values of about 60 and 75 Å(2), respectively. In R1/R2 mixtures, there is a strong partitioning of R1 to the surface and R2 competes less favorably because of the steric or packing constraints of the larger R2 dirhamnose headgroup. In dilute solution (<20 mM), R1 and R2 form small globular micelles, L(1), with aggregation numbers of about 50 and 30, respectively. At higher solution concentrations, R1 has a predominantly planar structure, L(α) (unilamellar, ULV, or bilamellar, BLV, vesicles) whereas R2 remains globular, with an aggregation number that increases with increasing surfactant concentration. For R1/R2 mixtures, solutions rich in R2 are predominantly micellar whereas solutions rich in R1 have a more planar structure. At an intermediate composition (60 to 80 mol % R1), there are mixed L(α)/L(1) and L(1)/L(α) regions. However, the higher preferred curvature associated with R2 tends to dominate the mixed R1/R2 microstructure and its associated phase behavior.

摘要

本文讨论了单鼠李糖和二鼠李糖脂(R1、R2)及其混合物在溶液中的自组装和在气/水界面上的吸附,这些性质通过小角中子散射(SANS)和中子反射率(NR)进行了测量。介绍了从铜绿假单胞菌培养物中生产氘标记鼠李糖脂(NR 研究所需)及其分离为纯 R1 和 R2 成分的过程。在气/水界面上,R1 和 R2 呈现出类似于朗缪尔的吸附等温线,饱和面积/分子值分别约为 60 和 75 Å(2)。在 R1/R2 混合物中,由于 R2 较大的二鼠李糖头基的空间位阻或堆积限制,R1 强烈地分配到表面,而 R2 则更不利地竞争。在稀溶液(<20 mM)中,R1 和 R2 形成小的球形胶束 L(1),其聚集数分别约为 50 和 30。在较高的溶液浓度下,R1 具有主要的平面结构,L(α)(单层、ULV 或双层、BLV 囊泡),而 R2 保持球形,其聚集数随表面活性剂浓度的增加而增加。对于 R1/R2 混合物,富含 R2 的溶液主要是胶束,而富含 R1 的溶液具有更平面的结构。在中间组成(60 至 80 mol% R1)时,存在混合的 L(α)/L(1)和 L(1)/L(α)区域。然而,与 R2 相关的较高的优先曲率倾向于主导混合的 R1/R2 微结构及其相关的相行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验