Suppr超能文献

脉冲辐解研究温度对细胞色素氧化酶中氧化还原中心之间电子转移的影响:A 型和 B 型酶的比较。

Pulse Radiolysis Studies of Temperature Dependent Electron Transfers among Redox Centers in -Cytochrome Oxidase from : Comparison of A- and B-Type Enzymes.

机构信息

Institute of Analytical Chemistry, Faculty of Pharmacy, University of Copenhagen, 2100Copenhagen, Denmark.

Department of Immunology, The Weizmann Institute of Science, 76100Rehovot, Israel.

出版信息

Biochemistry. 2022 Nov 15;61(22):2506-2521. doi: 10.1021/bi100548n. Epub 2010 Nov 8.

Abstract

The functioning of cytochrome oxidases involves orchestration of long-range electron transfer (ET) events among the four redox active metal centers. We report the temperature dependence of electron transfer from the Cu site to the low-spin heme-() site, i.e., Cu + heme-() → Cu + heme-() in three structurally characterized enzymes: A-type from (PDB code 3HB3) and bovine heart tissue (PDB code 2ZXW), and the B-type from (PDB codes 1EHK and 1XME). , data sets were obtained with the use of pulse radiolysis as described previously. Semiclassical Marcus theory revealed that λ varies from 0.74 to 1.1 eV, , varies from ∼2 × 10 eV (0.16 cm) to ∼24 × 10 eV (1.9 cm), and β varies from 9.3 to 13.9. These parameters are consistent with diabatic electron tunneling. The II-Asp111Asn Cu mutation in cytochrome had no effect on the rate of this reaction whereas the II-Met160Leu Cu-mutation was slower by an amount corresponding to a decreased driving force of ∼0.06 eV. The structures support the presence of a common, electron-conducting "wire" between Cu and heme-(). The transfer of an electron from the low-spin heme to the high-spin heme, i.e., heme-() + heme- → heme-() + heme-, was not observed with the A-type enzymes in our experiments but was observed with the ; its Marcus parameters are λ = 1.5 eV, = 26.6 × 10 eV (2.14 cm), and β = 9.35, consistent also with diabatic electron tunneling between the two hemes. The II-Glu15Ala mutation of the K-channel structure, ∼ 24 Å between its CA and Fe-, was found to completely block heme- to heme- electron transfer. A structural mechanism is suggested to explain these observations.

摘要

细胞色素氧化酶的功能涉及到四个氧化还原活性金属中心之间长程电子转移 (ET) 事件的协调。我们报告了三种结构特征明确的酶中 Cu 位点到低自旋血红素()位点的电子转移对温度的依赖性,即 Cu + heme-() → Cu + heme-():来自(PDB 代码 3HB3)和牛心组织(PDB 代码 2ZXW)的 A 型,以及来自(PDB 代码 1EHK 和 1XME)的 B 型。,使用前文所述的脉冲辐射解法获得数据。半经典 Marcus 理论表明, λ 从 0.74 到 1.1 eV 变化, ,从约 2 × 10 eV(0.16 cm)到约 24 × 10 eV(1.9 cm)变化,β 从 9.3 到 13.9 变化。这些参数与绝热电子隧穿一致。细胞色素中的 II-Asp111Asn Cu 突变对该反应的速率没有影响,而 II-Met160Leu Cu 突变则慢了约 0.06 eV,这对应于驱动力的降低。结构支持 Cu 和血红素()之间存在共同的电子传导“导线”。在我们的实验中,A 型酶中没有观察到从低自旋血红素到高自旋血红素的电子转移,即 heme-() + heme- → heme-() + heme-,但在中观察到了;其 Marcus 参数为 λ = 1.5 eV, = 26.6 × 10 eV(2.14 cm),β = 9.35,也与两个血红素之间的绝热电子隧穿一致。K 通道结构中距离其 CA 和 Fe-约 24 Å 的 II-Glu15Ala 突变被发现完全阻止了血红素到血红素的电子转移。提出了一种结构机制来解释这些观察结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验